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Abstract
Container Runtime Systems (CRSs), which form the foundational
infrastructure of container clouds, are critically important due to
their impact on the quality of container cloud implementations.
However, a comprehensive understanding of the quality issues
present in CRS implementations remains lacking. To bridge this
gap, we conduct the first comprehensive empirical study of CRS
bugs. Specifically, we gather 429 bugs from 8,271 commits across
dominant CRS projects, including runc, gvisor, containerd, and
cri-o. Through manual analysis, we develop taxonomies of CRS
bug symptoms and root causes, comprising 16 and 13 categories,
respectively. Furthermore, we evaluate the capability of popular
testing approaches, including unit testing, integration testing, and
fuzz testing in detecting these bugs. The results show that 78.79% of
the bugs cannot be detected due to the lack of test drivers, oracles,
and effective test cases. Based on the findings of our study, we
present implications and future research directions for various
stakeholders in the domain of CRSs. We hope that our work can
lay the groundwork for future research on CRS bug detection.

CCS Concepts
• Software and its engineering→ Software verification and
validation; Software testing and debugging; • Computer sys-
tems organization → Cloud computing.
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1 Introduction
Containers provide a highly flexible and portable solution for man-
aging and deploying application workflows in the cloud. According
to the Cloud Native Computing Foundation (CNCF) Annual Survey
2023 [5], containerization has become the predominant standard,
with over 66% of organizations adopt cloud native technologies in
production. It highlights the benefit of widespread containerization
and the ongoing shift towards a container-centric approach in cloud
computing. As a result, ensuring the quality, reliability and security
of container infrastructure is paramount.

As depicted in Fig.1a, the container cloud architecture comprises
three layers: orchestration, container, and kernel layers. The orches-
tration layer includes container cluster management platforms like
Kubernetes [30], which automates and scales containers. The kernel
layer provides basic isolation features for containers. The container
layer, positioned as the middle layer, is composed of Container
Runtime Systems (CRSs) that serve two primary functions: inter-
preting container orchestration commands complying with Con-
tainer Runtime Interface (CRI) protocol [31] (e.g., containerd and
cri-o) and operating containers within the Open Container Initia-
tive (OCI) [47] (e.g., runc, gvisor). CRSs work as the foundational
infrastructure of container clouds by enabling the deployment and
management of containers. Therefore, it is important to ensure the
reliability and security of runtime systems.
Motivation. Given the unique features of CRSs, such as multi-
tenant application scenarios, complex configurations and elevated
privileges for system-level communication, the bug patterns in
CRSs can manifest in different ways, leading to characterized issues
with reliability and security. As the foundational infrastructure
in container services, faults in CRSs often necessitate immediate
remedial actions for dependent cloud services, such as Docker [22]
and Kubernetes [30]. For instance, the container vulnerabilities
CVE-2019-5736 [17] and CVE-2024-21626 [21] can result in priv-
ilege escalation and container escape due to mishandling of pro-
cess and file descriptor isolation in CRS. The root causes of these
vulnerabilities are related to the unique lifecycle management of
CRS. Moreover, considering the frequent updates and high security
demands of CRSs, the rapid code changes can also introduce regres-
sion vulnerabilities, e.g., CVE-2023-27561 [20]. It is necessary to
understand the characteristics of CRS and its corresponding issues.

While many studies have explored bugs in various software sys-
tems [4, 50, 51, 58], including container security [1, 35, 63] and
performance issues [23], there is currently no comprehensive study
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Figure 1: Overview of Container Cloud and CRSs

that delves into the characteristics of various bugs in CRSs. Specifi-
cally, there is a lack of understanding regarding the types of bugs
in CRSs, as well as their symptoms, root causes, and the challenges
involved in detecting them.

To fill this gap, we present the first study targeting understanding
the bugs present in CRSs, aiming to answer three key research
questions: RQ1:What are the common symptoms of bugs occurred
in CRSs? RQ2:What are the prevalent root causes of these bugs?
RQ3: How effective are existing methods in detecting different
types of bugs in CRSs, and what are the main challenges?
Contributions. To answer these research questions, we select
two representative projects from each of the two container layers,
specifically runc and gvisor from the OCI layer, and containerd
and cri-o from the CRI layer. The CRSs we selected are widely used
in the production environment, serving billions of users. Among
them, runc and containerd are the default runtimes for Docker
and Kubernetes. gvisor is sandbox [65] runtime implementation
developed by Google, which is used as the default runtime for the
first generation execution environment of Google Cloud [25]. cri-o
is specifically designed as the high-level runtime for Kubernetes.
It is highly compatible with the CRI protocol and supports hybrid
security-level OCI runtime workloads.

We collect commits from the four projects and extract bug-
related commits. After filtering out irrelevant commits, we obtain a
dataset of 429 commits containing bugs and corresponding fixes in
total from the above four projects. We manually analyze each bug
and its repair to gain a quantitative understanding of these bugs and
summarize the symptoms (RQ1) and root causes (RQ2). Specifically,
we summarize a total of 16 types of symptoms and 13 types of root
causes. We further perform in-depth analysis to understand the
unique features of CRS bugs, the differences compared to other
software and the relationship between symptoms and root causes.

We further investigate the challenges involved in detecting these
bugs by studying the three most widely used testing methods: unit
testing, integration testing, and fuzz testing. We collect existing
tests, analyze whether the collected bugs can be covered and iden-
tify the reasons behind these outcomes to address RQ3. Our results
indicate that only approximately 20% of the gathered bugs can be
automatically detected with existing testing approaches. This is
largely attributable to the absence of test oracles 9.32%, test drivers
41.96%, or test cases 27.97%. By addressing these research questions,
this study provides a comprehensive understanding of container
bugs, which serve as a foundation for future work in enhancing the
quality of CRSs.

In summary, this paper makes the following contributions:

• We conduct the first empirical study to systematically explore the
characteristics of bugs in Container Runtime Systems (CRSs). We
provide taxonomies for bug symptoms and root causes, offering
insights into understanding CRS bug characteristics.

• We conduct the study on the effectiveness of existing testing
methods in detecting different types of bugs in CRSs.

• We offer findings based on the developed taxonomies and provide
recommendations for different stakeholders.

• We collect a dataset of bugs from CRSs, which can serve as a
valuable benchmark for further research and testing of CRSs.

2 Background
As illustrated in Fig. 1, container cloud systems can be categorized
into three layers: orchestration layer, container layer, and kernel
layer. The orchestration layer handles the management of con-
tainers and resources, while the container layer is responsible for
container images and container isolation. The container layer con-
tains two sub-layers: the high-level container layer which complies
with Container Runtime Interface (CRI) protocol, and the Open
Container Initiative (OCI) regulated lower-level container layer.
The kernel layer receives commands from the container layer and
provides container isolation and resource limitations.
Container Runtime Initiative (CRI). containerd [7] and cri-
o [15] are the top two recommended CRI runtime implementations
by Kubernetes, which function as a tool for managing the lifecycle
of lower-level container runtimes. The main tasks of the CRI layer
include providing the OCI runtime with a prepared and configured
image packages, managing image versions and snapshots, and han-
dling networking configuration for the container, which is done
through the gRPC service to receive commands. The CRI runtime
is designed to be loosely coupled, depending on a variety of plugins
for its functionality. These include built-in plugins such as snap-
shots and contents, as well as external plugins like hcsshim [39] or
user-customized plugins. The unified container initiative protocol
allows a CRI runtime to manage multiple life cycles of OCI runtimes
with different implementations.
Open Container Initiative (OCI). OCI runtimes act as vital com-
ponents for container services. The primary function of OCI run-
times is to parse the input configuration and communicate with the
kernel to customize isolation and resource usage. The OCI runtime
initiator will prepare all the processes required to start a container,
after which the functions of the OCI runtime will be controlled by
the runtime engine. For instance, runc [48], the de facto default OCI
runtime for CRI runtimes, which transfer the received commands
into the API of libcontainer for managing cgroup, namespace,
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seccomp and etc. gvisor is a popular sandbox [65] OCI runtime,
which interacts with the host system based on runsc and sentry.

3 Methodology
To comprehend the CRS bugs, we first gather the commits of runc,
gvisor, cri-o and containerd, and then filter the results with
keywords to identify bug-repairing commits, which are kept as
candidate bugs. The collected commits are then used to study the
first two research questions. Specifically, we manually read, triage,
and label the bug-repairing commits, and then develop the taxon-
omy of both symptoms and root causes for each bug. To answer
RQ3, we collect existing tests and subsequently execute them on
corresponding software versions. We manually analyze the testing
results and identify the specific reasons.

3.1 Data Collection
3.1.1 Bug Collection. Following previous works [51, 53, 54], we
collect and analyze bug-repairing commits from four of the most
widely-used CRS projects for bug analysis. Specifically, we select
runc and gvisor for the respective OCI runtime layer. For the
CRI runtime layer, we choose containerd and cri-o. These sys-
tems are all implemented in the Go programming language and are
pre-configured as the default runtime combination in mainstream
container orchestration systems such as Kubernetes and Docker/-
Moby. We also attempt to include GitHub issues in our dataset. We
find that all the bug-related issues are already linked to our selected
bug commits, since the resolved issues are typically accompanied
by fix commits. However, bug related commits may not always
involve an issue (e.g., bugs fixed by developers independently).

We collect and analyze the commits over a two-year period,
starting from June 1st, 2021. In total, we collect 1,081, 2,305, 2,981,
and 1,904 commits from runc, gvisor, containerd and cri-o,
respectively. Among all the commits we collected, bug-repairing
commits are what we need for further analysis. Therefore, we fol-
low the previous works [33, 51] by selecting suitable keywords for
filtering the bug related commits. Specifically, we filter the com-
mits messages using keywords including fix, error, bug, mistake,
incorrect, flaw, fault, issue, performance, security, cve and
vulnerability. Then we remove the duplicated commits, such as
those with keywords like merge or pr. We are left with a total of
253, 458, 356 and 215 commits for the four projects, respectively.

For each commit, we conduct a thorough manual review of the
developer’s comments within the source code, the commit mes-
sages, and the discussions associated with attached issues and pull
requests. After our manual confirmation and filtering process, we
retain commits explicitly related to bug-repairing activities, total-
ing 99, 115, 152, and 63 bug-repairing commits, respectively. We
then summarize the symptoms and root causes of CRS bugs from
these 429 commits. During the analysis, we also check whether the
commits are for patching security vulnerabilities by matching the
commit with records from MITRE CVE Database [14] and Github
Security Advisory of each project. In total, we assemble 19 unique
security vulnerabilities, which are listed on our website [28].

3.1.2 Test Collection. To understand the challenges associatedwith
detecting the collected bugs in CRSs, we examine the existing test-
ing suites within CRS projects. We focus on three popular testing
methods: unit testing, integration testing, and fuzz testing, which

are commonly integrated in the selected projects (e.g., within the
tests directory). Our main objective is to evaluate the effectiveness
of these tests in detecting the collected bugs and gain insights into
why certain bugs fail to be detected.
• Unit test. Since all four selected projects are primarily imple-
mented in the Go programming language, the unit test adheres
to the native Go test paradigm. Test files end with “test”, function
names begin with “Test”, and the testing log is prefixed with
“RUN”. Based on these patterns, we track each unit test drivers
following testing flags from the Makefile and source code. Even-
tually, we collect 314, 449, 734 and 62 unit tests for runc (release
1.1.4), gvisor (release 20230710.0), containerd (release 1.6.15)
and cri-o (release 1.27.0).

• Integration test. Unlike unit tests, which focus on testing indi-
vidual component or function, integration tests in CRS usually
verify the assembled functionalities such as container create
or delete. We examine the test build script of CRS projects and
filter related flags such as integration. We also gather all the
Go tests that are called during the integration testing. In total, we
collect 170, 22, 190, and 309 integration tests for runc, gvisor,
containerd and cri-o, respectively.

• Fuzz testing. The fuzz testing includes test cases written by OSS-
Fuzz [3] and CNCF Fuzz [6], which are used to test key functions
of CRS project. We follow the build scripts of CRS projects for
these two fuzzing platforms and collect 11, 1, 28, 17 fuzz tests for
runc, gvisor, containerd and cri-o, respectively.
After collecting the tests, we execute them to determine whether

the corresponding bugs could be detected. Subsequently, we con-
duct a manual analysis of the dynamic execution information and
summarize the challenges associated with detecting bugs from dif-
ferent categories.

3.2 Manual Analysis
To create a taxonomy for symptoms and root causes in CRS bugs,
we follow the prior work with an open coding procedure [51–53]
and split the commits into two halves for analysis. In the first round
of analysis, two authors independently analyze the informative
messages, bug behavior, modified files and testing results of each
commit, and group them according to their symptoms or root causes.
If a commit had unique symptoms or root causes, a new category
will be created. As the taxonomies are refined during the manual
analysis, the two authors discuss and clarify any differences in
their categories. For any dispute, an arbitrator will be introduced
to jointly discuss the resolution of the taxonomy result until they
can reach the consensus. If they cannot reach consensus, the bug
is classified as “Others”. The second round repeats the procedure
with the remaining 50% of the commits, and the rate of arbitration
falls from 50% to 12%. In the third round, the authors sample 20% of
the commits in each project five times and examine the proposed
taxonomy. The controversial commits are discussed by all authors
and lead to a reevaluation of the related categories.

The final version of the taxonomies are reviewed and confirmed
by all the authors. For the security vulnerabilities of CRSs, the
corresponding fix commits are picked with the keywords (e.g., CVE)
or the assigned GitHub security advisory ID (e.g., GHSA). We jointly
analyze and confirm the commits that are indeed the fix commits for
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the security vulnerabilities. We evaluate the inter-rater reliability
of labeling in each round with Cohen’s Kappa (k) coefficient. In the
initial round, the inter-rater reliability k is 0.55, which improves to
0.67 in the second round. After detailed analysis in the third round,
the k value increases to 0.83, signifying good agreement [32].

4 RQ1: Symptom Taxonomy
Fig. 2 presents the hierarchical taxonomy of symptoms of container
bugs in CRSs, organized into 4 major categories: Build Failure, Unex-
pected Termination, Unexpected Functionality and Poor Performance.
Each high-level category is further subdivided into subcategories
based on the bug characteristics.

To highlight the security vulnerabilities in CRSs, we label part
of subcategories, i.e., leaf nodes in the taxonomy tree using red
color. To distinguish the severity of each category, we adapt four
color intensities based on the average CVSS score of the bugs. Our
analysis reveals that over half of the existing CRS vulnerabilities (11
out of 19) exhibit the symptom of Escalated Privilege, underscoring
the severity of this bug category.

Finding 1: We identify a total of 16 distinct leaf categories
of bug symptoms. Among these categories, 5 (31.25%) exhibit
the association with the security vulnerabilities of CRSs.

4.1 Build Failure (A)
The CRSs require compilation before providing the service, with
various configurations on different supporting architectures. We
find that 7.69% of the bugs occur during the building phase, falling
under the category of Build Failure. The build failure mainly mani-
fests as the dependencies errors, which occur when there are issues
with the dependencies required to build CRSs.

Dependency errors can occur at package level and API level. De-
pendency errors at the package level can arise when there are
frequent updates to upstream dependencies, leading to incompati-
bility issues during the building process. Dependency errors at the
API level occur due to the need for distinct implementations and
configurations to support various computing architectures and OS
distributions, given that OCI and CRI software is designed to be
platform-agnostic. As a result, the building process may encounter
platform-specific unsupported API errors, leading to build failures.

Finding 2: A total of 7.69% of the bugs fall under the cate-
gory of Build Failure, which is mainly attributed to the inher-
ent requirement for CRSs to be platform-agnostic, leading to
cross-platform compatibility issues such as package or API
dependency errors.

4.2 Unexpected Termination (B)
A significant portion of bugs (20.98%) are related to unexpected
terminations during the running of CRSs, including two main sub-
categories: Unexpected Crash and Incorrect Exit Code.

4.2.1 Unexpected Crash (B.1). The majority of Unexpected Ter-
mination bugs (88.89%) fall into the Unexpected Crash category.
Although crashes are a common symptom, they occur in a variety
of container-specific situations such as Plugin Management Error
(B.1.1), Runtime Daemon Crash (B.1.2), and System Communication

Error (B.1.3). Notably, 25.00% of crashes occur during the manage-
ment of plugins. CRSs, especially CRI runtimes, use many plugins to
facilitate functionality and reduce coupling. However, the improper
usage of plugins may lead to unexpected crashes. For instance,
containerd crashes during the management of snapshot plugin,
which is caused by the incorrect calling for Commit method [10].

There are 53.75% of crashes that directly break down the runtime
daemon. For example, if runc starts the systemd in a container
without setting specific system configuration (e.g., deviceAllowList),
it will return a fatal error in accessing devnull location and lead
to the crash of runtime daemon [45]. As CRSs usually manage
container services with a resident daemon, the crash of the daemon
could have severe consequences to the service of CRSs.

The remaining 21.25% of the crashes happen when CRSs com-
municate with the system-related API calls (e.g., using system API
to request cgroups, namespaces, and networking resources from the
host machine). It is a unique feature of CRSs, as common application
software rarely handles these system-related resources.

4.2.2 Preset Exit Code (B.2). 11.11% of the bugs that caused unex-
pected termination are classified under the Preset Exit Code category.
These bugs do not cause a CRS crash but instead terminate them
with a predetermined exit code due to some errors. These exit codes
represent abnormal termination status. An example is when using
the shim.Delete command in containerd’s shim, which always
returns a 137 exit code when cleaning up temporary resources (i.e.,
the task has been killed) [11].

Finding 3: 20.98% of the collected bugs manifest as Unex-
pected Termination. These symptoms are highly related to the
features of CRSs workflow from managing runtime daemon,
managing different plugins to communicating with the host
using system calls.

4.3 Unexpected Functionality (C)
The prevalent error Unexpected Functionality constitutes 59.44%
of the analyzed bugs. These bugs can be further categorized into:
Incorrect Execution Output, Authorization Error, and Logging Error.
Those bugs are closely related to the core functionalities of CRSs.

4.3.1 Logging Error (C.1). Logging Error accounts for 10.98% of
the unexpected functionality bugs. As a core function in cloud
systems, logging is crucial for cloud service maintenance and error
diagnosis. Logging errors represent situations where logging is
not implemented correctly, such as providing inaccurate logging
information or creating overfilled log files. For example, overfilled
log files can pose challenges in analysis and consume significant
system storage space.

4.3.2 Incorrect Execution Output (C.2). The most prevalent cate-
gory of unexpected functionality bugs in CRSs is Incorrect Execution
Output, accounting for 70.59% of all bugs. This category refers to
situations where the function output assigned to the runtime’s
internal variables leads to incorrect computational results, either
due to incorrect or improperly formatted output. In addition to the
common symptom of Incorrect Return Value (C.2.1), there are two
symptoms that are more related to CRSs:Wrong Container Behavior
and Incorrect Configuration Effect (C.2.3).
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Figure 2: Symptoms of CRS Bugs
* The numbers on the rectangles are the number of bugs, while the red colored categories are security vulnerability related symptoms.

Wrong Container Behavior (C.2.2), which accounts for 34.44% of
the incorrect execution output bugs, refers to the container operat-
ing with incorrect or unexpected behaviors from user commands.

Incorrect Configuration Effect, accounting for 22.78% of the in-
correct output issues, occurs when the preset configuration does
not work as expected, leading to incorrect computational results.
For example, the configuration (ENOSYS) for runc does not work
correctly on the s390x platform due to different syscall support
policies for the kernel. There is also a category of Other (C.2.4) bugs,
which account for 8.89% of the total, that rarely occur and have
no identifiable characteristics, such as wrong output for exception
warnings and misleading command line hints.

4.3.3 Authorization Error (C.3). Authorization is another critical
feature in CRSs, granting them specific operating system privileges
for specific usage within container instances. Authorization Error
refers to bugs that cause improper authorization [56] and accounts
for 18.43% of unexpected functionality bugs.

We identify two main symptoms for authorization errors: Access
Permission Denied (C.3.1) and Escalated Privilege (C.3.2), accounting
for approximately half of the authorization errors, respectively. Ac-
cess permission denied bugs typically occur when users are blocked
from accessing specific container resources, while they should have
permission to access the location or file. For instance, runc may
falsely block the mounting point of procsyskernelns_last_pid, re-
sulting in no write permission for a process. Conversely, Escalated
Privilege bugs allow users to have access to container resources
they are not supposed to have access to. These bugs can have se-
vere consequences, ranging from container permission escalation
to sandbox breakout of the preset isolation environment, reflecting
the majority amount (59.57%) of security vulnerabilities.

Finding 4: The most common category of bugs in CRSs
(59.44%) is Unexpected Functionality, with Incorrect Execution
Output being the most prevalent subcategory (70.59%). From
a security perspective, the most critical symptom is Escalated
Privilege, often resulting from authorization errors. This symp-
tom is closely related to the inherent characteristics of CRSs.

4.4 Poor Performance (D)
Poor Performance, which represents 11.89% of the total bugs, en-
compasses performance issues related to storage, memory, and exe-
cution time. This category includes High Disk Resource Occupancy,
Excessive Execution Time, and Memory Error, which account for
15.69%, 33.33%, and 50.98% of Poor Performance bugs, respectively.

4.4.1 High Disk Resource Occupancy (D.1). High Disk Resource Oc-
cupancy often manifests as excessive disk usage and slow input/out-
put (I/O) pipeline processing. Improper allocation of storage re-
sources not only leads to I/O pipeline resource bottlenecks, but can
also cause the over-consumption of the host storage that impacts on
other containers. A typical example is the incorrect implementation
of slice copy with append in containerd [12], which results in the
storage space being used up more quickly than anticipated.

4.4.2 Excessive Execution Time (D.2). Excessive Execution Time can
slow down the runtime significantly, potentially leading to non-
termination. For instance, a bug was discovered in runc [49], where
the incorrect execution results in a much longer execution time.

4.4.3 Memory Error (D.3). Memory Error bugs are mainly caused
by Out of Memory (D.3.1) and Host Memory Leak (D.3.2). For Out of
Memory, the amount of memory allocated for a container is deter-
mined by the memcfg configuration. However, the bugs may cause
the container to consumemorememory than intended, even exceed-
ing memory usage limits. This could lead to severe issues, including
malicious memory consumption, which creates vulnerabilities for
denial of service attacks and container escapes [64].

Host Memory Leak refers to the memory boundary leaks of CRSs,
which can have serious consequences. For example, the byte order
representation used in runc [46] differs from that expected by
systemd, causing reversed cpuset ranges to be set in systemd
transient unit [36].

Finding 5: Bugs with Poor Performance symptom account for
11.89% of all bugs and can manifest as the abnormal behav-
iors. These bugs are primarily attributed to the complexities
involved in managing memory and storage within container-
ized environments.

5 RQ2: Root Cause Taxonomy
We further conduct an analysis of the root causes of the bugs col-
lected in CRSs. The taxonomy of root causes is presented in Fig. 3,
which includes categories of Coding Error, Configuration Error, and
Others. There are a total of 13 leaf categories, including others that
do not fit logically into the other categories.

Similarly, the categories in red represent the security vulnera-
bilities flagged bug root causes, i.e., they have caused real world
security consequences. These categories can be ranked into four
groups based on their prevalence and colored with different inten-
sities to represent their severity.
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5.1 Coding Error (A)
The most prevalent root cause for CRS bugs is coding errors, ac-
counting for 65.50% of all bugs, including Improper Exception Han-
dling, Incorrect 3rd Party Library Usage as well as security vulnera-
bility flagged root causes like Insecure Runtime Implementation and
Incorrect Function Implementation (e.g., image parsing).

5.1.1 Improper Exception Handling (A.1). The Improper Exception
Handling category is a root cause of 22.06% of the Coding Error bugs.
When exceptions are not handled properly, the runtime may termi-
nate unexpectedly and error prompts may be missing, resulting in
dysfunctional runtime services and inaccurate error message. For in-
stance, in containerd, the errors in function gorestrl.rdt.Con-
tainerClassFromAnnotations were not properly handled, lead-
ing to ineffective configuration parsing and incorrect runtime func-
tionality.

5.1.2 Incorrect 3rd Party Library Usage (A.2). 15.66% of the Cod-
ing Error bugs are caused by the incorrect usage of third-party
libraries. Since CRSs rely on numerous third-party libraries during
the development and runtime phases, it is important to use them
correctly. Improper use includes issues such as unnecessary vari-
able usage, inconsistencies in function implementation with the
initially settled API, and compatibility problems with the runtime
environment. For example, the third-party library libseccomp [44]
changed its method from ActKill to ActKillThread. Calling the
outdated version of the API may lead to undefined issues.

5.1.3 Insecure Runtime Implementation (A.3). 17.08% of the Coding
Error bugs are caused by insecure runtime implementation, which
can result in security issues such as incorrect authorization illus-
trated in Section 5. This category can be further divided into Unsafe
API Usage (A.3.1) and Inappropriate Lifecycle Organization (A.3.2).
The improper use of internal or external unsafe APIs can intro-
duce potential exploitable vulnerabilities into CRSs. For instance,
CVE-2021-43816 [19] shows an example where the CRI plugin of
containerdmisused the API of SELinux security module, resulting
in improper file relabeling of arbitrary files and directories [9]. It
allows the bind mounts in hostPath volumes, thereby elevating
container permissions.

Inappropriate Lifecycle Organization (A.3.2) refers to container
lifecycle management issues that may cause the miss of permission
checks, leading to issues such as memory leaks, wrong isolation
allowance, and action handling race conditions. For example, a bug
occurs when containerd crashes during the creation of a container,

and the shim process is not properly cleaned up, which may bring
leak of shim process and potential security issues.
5.1.4 Incorrect Function Implementation (A.4). Incorrect Function
Implementation is a general category of errors that greatly affects
the functionality of CRSs, and accounts for 45.20% of coding errors.
The majority of the incorrect implementations (70.08%) are caused
byWrong Code Logic (A.4.1). Another category is Incorrect Image and
Config Parsing (A.4.2), which accounts for the remaining 29.92% of
incorrect implementation bugs. Due to the nature of cross-platform,
CRSs need to parse different images and have many configurations
that vary from memory, storage, to host mounting and networking.
Therefore, incorrectly implemented parsing functions may result
in wrong container behaviors or incorrect CRSs functionality.

Finding 6: Coding Error is the most common root cause of
bugs in CRSs, accounting for 65.50% of all bugs. In addition to
common coding errors such as incorrect API usage and flawed
logic, coding errors in CRSs are often related to the importing
of images and the management of container lifecycles.

5.2 Configuration Error (B)
In addition to coding errors, configuration errors are another signif-
icant root cause of bugs in CRSs, accounting for 31.47% of all bugs.
Configuration errors can impact the performance of the runtime
lifecycle, resulting in errors and affecting its overall functionality.
Four sub-categories of configuration errors include: Improper Au-
thorization Configuration, 3rd Party Component Configuration Error,
Build Configuration Error, and Runtime Shim Configuration Error.

5.2.1 Improper Authorization Config (B.1). CRSs, especially CRI
runtimes, encounter numerous scenarios in processing authoriza-
tion configurations to provide containerization services. Incorrect
setting of such permission related configurations for containers can
lead to functional issues and even security vulnerabilities. Specif-
ically, these bugs can be classified into two categories: Incorrect
Mount Options (B.1.1) and Inaccurate Permission Assignment (B.1.2).

CRSs require multiple mount settings for CRSs to normally start
a container. Mount options are critical in starting containers, as
they include mount points, parameters (e.g., auto mount option,
root option, synchronize option) and accessibility. For instance,
the dysfunctional behavior of the pause container [8] is due to the
absence of three specific flags (nosuid, nodev and noexec) at the
/dev/shmmount point. Inaccurate permission assignments can also
lead to significant risks in CRSs, as many of these configurations are
pre-loaded and not altered by the users. Therefore, these bugs can
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have a significant impact on the performance and security of CRSs.
For example, the default seccomp configuration in containerd did
not block socket calls to AF_VSOCK, posing security concerns for
the runtime.

5.2.2 3rd Party Components Configuration Error (B.2). The incor-
rect configurations of 3rd Party components are a major root cause
of configuration errors, accounting for 42.22% of bugs. This cate-
gory mainly concerns errors caused by improper plugin handling
configurations and system-related configurations. CRI runtimes, in
particular, rely on a large number of plugins to support their func-
tionality, making them more susceptible to configuration errors in
plugins compared to OCI runtimes (64.29% vs. 48.28%). For exam-
ple, a strict AppArmor configuration can block reads of containerd
traces, making it difficult for diagnostic facilities to collect crash
or hang dumps [13]. In contrast, OCI runtimes, which have more
functions for interacting with system-related services, are more
vulnerable to errors in setting system-related configurations than
CRI runtimes (51.72% vs. 35.71%). For instance, a misconfigured
libseccomp configuration in runc could lead to a process with a
broken argc check [43].

5.2.3 Build Configuration Error (B.3). During the building process
of CRSs, incorrect configurations can affect the building result and
further container functionality. This root cause accounts for 25.19%
of all configuration errors. For example, misconfiguration of the
Go modules in containerd can cause a crash when using the jq
command [13] during container creation.

5.2.4 Runtime Shim Config Error (B.4). In containerized runtime
systems, there is a runtime shim that acts as an interface between
container managers (e.g., containerd) and runtimes (e.g., runc).
Incorrect configuration of the shim can lead to discrepancy issues
between CRI and OCI runtimes. This type of configuration error
is responsible for 10.37% of all configuration errors. An example is
that the incorrect configuration of the runhcs shim caused an error
in containerd for supporting the Windows hypervisor isolation.

6 In-Depth Analysis on CRS Bugs
Building on the taxonomy of bug symptoms and root causes in
CRSs, this section delves deeper into the common types of bugs
(Section 6.1), compares bug characteristics between CRS and other
software (Section 6.2), and explores the relationship between symp-
toms and root causes (Section 6.3).

6.1 CRS-Specific Bug Characteristics
We conduct a detailed analysis of bug characteristics within the
specific context of CRSs, focusing on four main types: performance
bugs, functional bugs, configuration bugs, and security issues.
Performance Bugs are characterized by the program operating
correctly but exhibiting sub-optimal performance. Our findings
indicate that a majority of performance bugs (88.24%) in CRS are
due to coding errors, while the remaining are mainly caused by the
improper configuration and dependencies on software in other lay-
ers. This leads to issues such as high disk resource occupancy, slow
execution, and excessive memory usage, which are closely related
to the unique features of CRS, such as the parallel use of multiple
containers and complex resource management. The performance

(a) OCI Symptoms

(b) CRI Symptoms

(c) OCI Root Causes

(d) CRI Root Causes

Figure 4: CRS Bug Taxonomy Distribution

issues can also cause serious consequences, high computational re-
source demands are often exploited to create Denial of Service (DoS)
threats. For example, Microsoft Azure cloud platform experienced
intermittent outages of more than 11 hours, disrupting an untold
number of customer websites along with Microsoft Office 365, Xbox
Live and other services across many countries [67]. More critically,
memory-related performance issues can lead to security concerns,
including privilege escalation and container escape scenarios.

Given the diverse root causes and the various consequences,
there is an urgent need to design effective methods for detecting
CRS performance errors, considering both performance and secu-
rity impacts in cloud systems.
Functional Bugs identified in CRSs include three main types: Log-
ging Errors, Incorrect Execution Output, and Authorization Error.
Logging bugs and authorization bugs are particularly relevant to
CRS features, as logging and authorization are core functionalities
of cloud systems. Incorrect execution output, while a general issue,
manifests uniquely in the context of CRS, such as incorrect con-
tainer behaviors, improper execution of container isolation-related
components, and flawed container inheritance.

Given the widespread use of CRS in cloud environments, it is
noteworthy that functional bugs in CRS have a higher relevance
to security issues. These bugs can be easily exploited by attackers,
leading to concerns such as privacy issues, unauthorized privilege
escalation, and isolation bypass. The primary challenge in testing
the functionality of CRS is its complexity, which involves various
functions and interactions with multiple software layers.
Configuration Bugs are a distinct category of CRS bugs due to
the intricacies of cloud configuration. As shown in Fig. 4, there is a
significant portion of bugs (31.47%) that are caused by configuration
errors. This prevalence is attributed to the CRS architecture, which
heavily depends on configurations to manage the operation of di-
verse components, including system and third-party components.
CRI plugins require specific configurations for operation, the OCI
runtime relies on config.json to initiate containers, and differ-
ent images need configurations to specify dependencies. Incorrect
configurations in CRSs can also lead to severe security issues.

The key challenges in detecting CRS configuration bugs lie in
the myriad configurations across different components and their
inter-dependencies. For example, CRS configurations span both
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management-level settings (e.g., plugin configurations) and system-
level settings (e.g., system mounts). While some configurations
adhere to explicit specifications (e.g., the OCI runtime specifica-
tion [47]), many others are customized (e.g., relying on add-on plug-
ins). Therefore, developing methods to better extract specifications
and model their impact and dependencies should be considered.
Security Issues in CRSs primarily encompass DoS attacks, priv-
ilege escalation or escape, memory leaks, and excessive resource
consumption, as highlighted in Fig. 2 and 3. As discussed earlier,
CRS bugs (such as performance, functional, or configuration bugs)
are more likely to lead to security issues due to the multiple attack
surfaces inherent in cloud architecture. For instance, our analysis
reveals that certain bug types (Root Cause A.4.1, B.1.2, and B.2.2)
are classified as vulnerabilities with relatively higher threat levels
(CVSS > 7.0), designated as High Severity.

Finding 7: Complex configurations during development and
usage phases of CRSs make configuration errors a significant
cause of bugs (31.47%). These errors often involve mount op-
tions, permission configurations, plugin configurations, sys-
tem call configurations, and shim configurations.

6.2 Comparison with Other Software
We compare the bug types of CRSs with other software, including
the common software, the relevant distributed software and the
similar CRS software.
Common Software. Compared to common software, such as au-
tonomous driving systems, deep learning libraries, protocols and
compilers, CRS exhibits specific bug symptoms and root causes
attributable to its distributed nature and containerization features.
Specifically, we can identify characterized CRS bug categories, in-
cluding the symptoms of B.1.2, B.1.3, C.2.2, C.2.3, C.3.1, C.3.2 and
root causes of A.3.2, A.4.2, B.1.1, B.1.2, B.2.1, B.2.2, B.4. bugs.
Relevant Software. Except for general software, CRSs share simi-
larities in application scenarios and architecture with Distributed
Systems (DS) and Operating Systems (OS). We observe that they
share many commonalities in bug types [4, 33, 40, 51, 53, 66], such
as performance bugs, configuration bugs and functional bugs due to
their distributed nature. However, it is important to note that while
these bug types may appear similar at a high level, their context
specifications differ significantly. As the middle layer to handle con-
tainers, CRSs introduce unique bugs related to container isolation
and orchestration. While these bugs can be broadly classified as
functional bugs, their specific nature and implications are distinct
to the CRSs. For instance, Runtime Shim Config Error arises from
the distinct lifecycle and architectural design of CRSs.

In contrast, Operating Systems, serving as the interface between
hardware and software, encounter bugs related to hardware re-
source management, interaction, and system security. Distributed
Systems, on the other hand, face challenges with maintaining con-
sistency, availability, and partition tolerance. As a result, traditional
static analysis or testing methods used in OS and DS may not be
effective in detecting CRS-specific bugs, highlighting the need for
the bug understanding and tailored approaches in this domain.
Other CRSs. Additionally, we compare the distribution of symp-
toms and root causes between two sets of software within the
same layer: containerd and cri-o for the CRI layer, and runc and

gvisor for the OCI layer. We calculate the average distribution
differences for each pair of software regarding symptoms and root
causes. As illustrated in Fig. 4, the average difference in symptom
distribution is 12.58% for the OCI layer and 12.91% for the CRI layer.
In terms of root causes, the average difference is 13.35% for the OCI
layer and 13.80% for the CRI layer.

While these results indicate consistent similarities, we also ob-
serve notable differences in the distribution of symptoms and root
causes between the two software implementations within each
layer. For example, we observe that runc does not exhibit High
Disk Resource Occupancy (D.1). This absence can be attributed to
runc’s direct interaction with the host kernel when handling disk
call functions, theoretically reducing the likelihood of encountering
bugs related to unreasonable disk resource usage. Similarly, there
is a significant difference between gvisor and runc regarding the
root cause 3rd Party Component Configuration Error (B.2). This
discrepancy is due to their varying dependencies on third-party
libraries. Specifically, runc typically utilizes the host kernel’s func-
tionalities directly, resulting in fewer dependencies on external
libraries. These differences suggest that, even for software within
the same layer, there can be distinct characteristics and bug distri-
butions due to different implementations.

6.3 Symptoms and Root Causes
During the analysis, we also observe clear relationships between
symptoms and root causes. Specifically, we found that the majority
(84.85%) of Building Failures (A) are caused by Configuration Er-
rors (B.3), highlighting the significant impact of configurations on
successful building processes. For common bugs like Crash (B.1),
Logging Error (C.1), and Incorrect Execution Output (C.2), we found
that they can be attributed to various root causes, including Coding
Errors (A.1, A.2, A.3, and A.4) and Configuration Errors (B.1, B.2,
B.3, and B.4). Incorrect Function Implementation (A.4) accounts
for the main reasons for crashes and incorrect execution output,
constituting 30.0% and 33.89%, respectively.

Authorization Error (C.3) is primarily caused by Incorrect Func-
tion Implementation (A.4), Improper Authorization Configuration
(B.1), and 3rd Party Component Configuration Error (B.2), with
respective percentages of 30.04%, 38.30%, and 12.77%. Excessive
Execution Time (D.2) is mainly attributed to Coding Errors (A),
accounting for 95.24%. Memory Error (D.3) is primarily caused by
Insecure Runtime Implementation (A.3), Incorrect Function Imple-
mentation (A.4), and 3rd Party Component Configuration Error
(B.2), with respective percentages of 53.84%, 23.08%, and 15.38%.
This indicates that runtime implementation is likely to contribute to
memory errors. Our further analysis reveals that Unsafe API Usage
(A.3.1) and Inappropriate Lifecycle Organization (A.3.2) account for
64.29% and 35.71% of memory errors, respectively.

7 RQ3: Study of CRS Tests
In general, the testing process involves running the target program
with given test cases and using test oracles to determine if any bugs
occur. Therefore, our study focuses on three main questions: ❶

whether the target functions with bugs can be tested, ❷ whether
the test cases can trigger the buggy code when the functions are
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Figure 5: Proportion of Bugs Lacking Test Drivers inDifferent
Root Causes

executed, and ❸ whether the test oracles can identify the bugs
when the buggy code is covered by the test cases.
Lack of Test Drivers. To evaluate whether the existing test drivers
can execute the functions with bugs, we collect all functions in-
volved in buggy-related commits (called buggy functions) as well as
the functions that have been executed by the collected tests (called
executed functions). Then we compare the buggy functions and
executed functions, and check whether the buggy functions can be
covered. We find that 41.96% of the bugs are not detected since the
corresponding buggy functions are not covered.

To detect the presence of a bug, one necessary condition is that
the code related to the root cause should be executed. Therefore,
we further study the relationship between the leaf categories of
root causes and the target function coverage to check the buggy
functions for which type of root causes are not covered.

From Fig. 5, we find that buggy functions with Runtime Shim
Config Error errors are less likely to be covered (64.29%), indicating
the lack of consideration of testing these container shim related
modules. In addition, most uncovered buggy functions are related
to configuration errors, such as Runtime Shim Config Error, Plugin
Config Error, Incorrect Image and Config Parsing, and Incorrect System
Config, where more than 40% are not covered.
Lack of Test Cases.We further analyze the bugs which lack proper
test cases. For these bugs, the tests will execute the buggy function
with proper oracle, while lacking proper test inputs for triggering
the bug. We find that 27.97% of the bugs failed to be detected by
existing tests due to the lack of proper inputs. Particularly, we
discover that unit tests of CRSs often have simple inputs that may
not be enough to trigger the buggy code, indicating the need for
automated testing algorithms to generate effective test cases.
Lack of Oracles. Our analysis reveals that 9.32% of the bugs are
undetected due to the lack of appropriate oracles even though they
are executed during tests. This indicates that existing tests could
reach the faulty code, but lack the oracles to identify the bugs. Since
oracles are directly related to symptoms, we study the relationship
between the leaf categories of symptoms and undetected bugs that
are caused by the lack of oracles. This can help understand which
symptoms are (or not) considered by the existing tests.

In Fig. 6, we find that 37.50% of high disk occupancy bugs and
35.29% of the excessive execution time bugs lack proper oracles. This
suggests a deficiency in storage performance and timeout checks
within testing designs, likely due to the challenge of determining
the ground truth regarding storage usage and time constraints. It is
surprising that the percentage of other bugs lacking oracles is low,

Figure 6: Proportion of Bugs without Oracles in Different
Symptoms

particularly for logic-related bugs. Our in-depth analysis reveals
two main reasons: ❶ many buggy functions are not covered by
existing tests and are therefore not included in the statistics; ❷

most of the tests are designed by developers, and the oracles (e.g.,
for logic errors) have been manually assigned.

Finding 8: Common testing methods, such as unit tests, in-
tegration tests, and fuzz tests, are insufficient for detecting
the collected bugs, with only a small portion (21.21%) being
detectable by existing tests. The reasons for the missing bug
detection include the lack of test drivers (41.96%), test oracles
(9.32%), and test inputs (27.97%).

Example. The code above illustrates CVE-2023-27561 [20], which
is a significant regression vulnerability introduced during an at-
tempt to fix CVE-2021-30465 [18] in runc. This fix inadvertently
nullified a previous patch for CVE-2019-19921 [16]. Specifically,
runc before version 1.0.0 had container escape bug by allowing
mounting directories through symbolic links under procfs race
conditions. This was patchedwith a check for themount of sensitive
locations such as the root directory (lines 12-15). The subsequent
patch for CVE-2021-30465 [18] employs the securejoin library
to verify mount targets to mitigate symlink-based race vulnera-
bilities (lines 5-7). However, this patch inadvertently reintroduced
CVE-2019-19921 [16] because the mount point dest would be set
before the checking of sensitive locations. While these bugs can
be categorized as functional or security bugs, they highlight the
relevance to the unique features of CRS, particularly regarding the
isolation properties of containerized environments and the potential
for race conditions in high-load, multi-tenant cloud environments.

1 func mountToRootfs(m *configs.Mount , c *mountConfig)

error {

2 rootfs := c.root

3 dest := m.Destination

4 if !strings.HasPrefix(dest , rootfs) {

5 dest = filepath.Join(rootfs , dest)

6 dest , err := securejoin.SecureJoin(rootfs , m.

Destination) // Patch for CVE -2021 -30465
7 if err != nil {

8 return err

9 }

10 switch m.Device {

11 case "proc", "sysfs": // Patch for CVE -2019 -19921
12 ...

Regarding bug detection, we find that this regression issue (CVE-
2023-27561) was not discovered until 2023. Despite the existence of
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many testing methods for runc, such as unit testing and fuzzing
suites, they are ineffective in detecting such bugs due to: ❶ the
complexity of designing a test driver. In this bug, it requires the
simulation of high concurrency tasks and specific race conditions
(e.g., via a mount/unmount script), and ❷ the lack of oracles to
accurately capture the bugs, as they do not cause crashes or other
explicit symptoms. This example demonstrates the challenges of
detecting CRS-specific bugs and the need for the development of
new methods in the context of cloud environments.
Discussions on Bug-Specific Detection Methods. Although we
find that the existing built-in test suites face challenges in detecting
bugs in CRSs, there can be other testingmethods devised for specific
bug types that might aid in CRS bug detection. We discuss the
relevant tailored approaches as follows:
• Performance Bug Detection. Torpedo [38], based on framework
syzkaller [26], employs resource usage-based oracles for detect-
ing out-of-band workload issues associated with high disk or
CPU occupancy. MANTA [64] targets the detection and valida-
tion of missing-account bugs within systems, which could be
adapted to detect memory exhaustion issues in CRSs.

• Functional and Security Issue Detection. Xiao et.al [59] designed
layer-specific strategies to exploit operation forwarding attacks
in sandbox containers. Yang et.al [61] proposed attacking paths-
specific methods for detecting excessive permissions from third
parties in cloud orchestration software. However, these approaches
are limited in scope and may not generalize for other CRS bugs.

• Configuration Bug Detection. Some research works have explored
techniques in detecting configuration bugs. For instance, PCheck
[60] generates configuration checking code to detect latent con-
figuration errors. Ctest [55] integrates software testing with pro-
duction configurations and code to identify failure-inducing con-
figuration changes. However, these methods may face challenges
when testing CRSs due to the complex and multi-resource-based
configurations (including containers, runtimes, and plugins).

8 Discussion
8.1 Implications and Lessons Learned
In this section, we summarize the implications of this work. Our
analysis aims to provide guidance tailored to the different features of
CRS bugs discussed in Section 6.1, for stakeholders of the container
cloud ecosystem, including users, developers, and researchers.
For Users.We provide the following suggestions:
• Monitoring performance and functionality. Users should periodi-
cally check whether the performance and functionality of CRS
are as expected (see Section 4.3) to prevent more severe conse-
quences like security-related abuse of privileges. For examples,
users should meticulously monitor for performance issues, in-
cluding excessive disk or memory usage, which can stem from
hardware, operating systems, configurations, or general imple-
mentation (see D.1, D.3 in Fig. 2). Our study indicates that such
monitoring should be performed especially carefully on certain
platforms such as s390x or Windows.

• Careful configuration and confirmation. In CRSs, numerous con-
figurations require input from users, and improper configuration
can easily lead to functional or security issues. For example, spec-
ifying improper system capabilities when launching containers

can be used by attackers for privilege escalation, even leading to
container escape. To mitigate such risks, users should adhere to
CRS configuration specifications and conduct thorough checks
before deployment, particularly in security-critical scenarios and
on platforms that may lack comprehensive support. Minimizing
configurations related to authorization to reduce potential abuse
should also be seriously considered by users. Additionally, many
comments in the manual or README may become outdated,
which users should carefully confirm.

For Developers. We offer the following suggestions for developers:
• Confirming functional correctness.CRSs involve numerous plugins
and API calls (e.g., system calls). In addition to common coding
best practices, developers must ensure correct configurations,
API compatibility, and proper API usage (see A.2, B.2 in Fig. 3).
Particular attention should be given to configurations with de-
fault parameters to check for incorrect specification constraints
or improper authorization allocation.

• Focusing on cloud security. Developers should focus more on
improving CRS security. Our study indicates that developers
should rigorously assess unsafe API usage, container lifecycle
management consistency, correct permission assignments, and
authorization configuration bugs in CRSs (refer to A.3.1, A.3.2,
B.1.1, B.1.2, B.4 in Fig. 3). Developers might also consider tracking
platform variances, abnormal inputs for CRSs, and verifying the
consistency of CRS functionalities across different versions.

• Adding high-quality tests and oracles. Our study shows that the
existing built-in test suites are limited. It is suggested for existing
projects to incorporate more tests and benchmarks, particularly
focusing on the different categories of bugs summarized in Fig.2
and Fig.3. Furthermore, CRSs should extend their support to the
greatest extent possible, copping with rigorous compatibility
tests, including correct and consistent container behaviors result-
ing from different commands and configurations (see C.2.2, C.2.3
in Fig. 2). Developers should enhance unit tests by augmenting
the number of test harnesses and corresponding oracles.

For Researchers. Based on our analysis of the unique features of
CRSs, we have identified potential future research directions:
• Automated Test Driver and Test Oracle Generation. Existing built-
in tests are inefficient and insufficient to address the complexity
and unique features of CRSs. Our findings highlight the need for
methods capable of generating diverse test drivers, effective test
cases, and various types of oracles. Test driver generation tech-
niques should cover different aspects, particularly configurations
(e.g., plugin configuration and mounting configuration), image
parsing, and incorrect code logic. The symptoms and root causes
summarized in this paper (see Figures 2, 3, 5, and 6) can benefit
researchers in designing test oracles and test drivers. A potential
direction is the LLM-based methods due to the capability of LLMs
in understanding code semantics and business logic, which can
help generate corresponding drivers [68] and oracles.

• Designing Bug-Specific Methods. Our study shows that designing
a general end-to-end testing approach (e.g., integration testing
and fuzzing) for detecting all kinds of bugs in CRSs is challeng-
ing. We suggest researchers divide the tasks and design detection
methods specific to specific types of bugs. For example, for per-
formance bugs, researchers can focus on collecting appropriate
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resource information (e.g., CPU and memory) and designing met-
rics for systematic monitoring. For configuration bugs, building
a causal model between configurations and their impact on CRSs
could be more effective than simple rule-based matching.

• Detecting Regression Bugs.Our analysis find that frequent updates
in CRSs can introduce regression bugs, which can cause secu-
rity issues. For example, CVE-2023-27561 [20] (see Section 7) is
caused by the break of the previously vulnerability patch during
software updates. The key challenge is evaluating the impact
of code changes, especially for those related to security patches.
Researchers can develop effective regression tests by considering
different file or method granulates. Patch fuzzing is a potential
direction that leverages previous PoCs (e.g., from CVEs) as initial
seeds to test patches effectively.

• LLM-based Scanning, Diagnosing and Bug Detection. We found
that Large Language Models have been applied to the cloud main-
tenance. For example, k8sgpt [29] is developed to assist scanning,
diagnosing, and triaging issues for Kubernetes configurations.
We foresee leveraging LLMs to detect bugs and analyze vulner-
abilities in CRSs as a promising direction. LLM agents can be
developed to test CRSs, debug failed tests, triage failures, and
even repair identified bugs. Therefore, how to build CRS-specific
intelligent LLM (e.g., CRS GPT) is an interesting direction.

• Log-basedMonitoring.Considering the complexity of CRSs, testing-
based methods may not detect all bugs due to the lack of test
drivers, oracles and tests. As a complement, online error detec-
tion (e.g., log analysis and anomaly detection) could be used
to detect some errors. For example, based on the log informa-
tion, we can detect incorrect runtime behaviors (see A.3.1, A.3.2
in Fig. 3) and some configuration errors (see B in Fig. 3). The
main challenges include the large volume of CRS logs and spe-
cific log representations. Designing effective log collection and
embedding construction methods for attack detection could be
important directions for future research.

8.2 Threats to Validity
Our dataset selection (including the projects, the bugs and tests)
is a potential threat. We mainly selected runc, gvisor, contain-
er and cri-o since they are the most commonly used CRSs in
industry. The selection of tests could pose another validity threat.
There might exist test cases that are used internally by development
teams or generated by bug-specific tools. Since these tests are either
not publicly available or challenging to adapt, we have focused on
various tests from the official codebases of CRS projects.

Time interval is a threat to the bug distribution. We limit our
commit dataset to last two years for covering the latest bugs. We
will keep updating the results by adding more analysis of new
bugs in the future. Another potential threat to our study is the
subjectivity involved in manual analysis. To address this, we take
measures such as discussing and cross-checking the labeling results
among the authors involved in the study. Additionally, we follow
a systematic and rigorous process for bug classification, and any
discrepancies are resolved through discussion and consensus. To
validate the representatives of our findings, we sample commits
from the entire dataset and compare the taxonomy results with our
researched commit data.

9 Related Work
Although there are some works studying errors in operating sys-
tems [4, 50, 58], distributed systems [24, 66], and DevOps sys-
tems [27, 41], these studies primarily focus on domain specific
characteristics of the study target instead of container cloud sys-
tems. Moreover, these studies miss many container-characterized
bug categories e.g., Escalized Privilege etc.
Container Cloud Security. Given the high security impact of con-
tainer cloud systems, much research has been devoted to studying
their security challenges. For example, Yang et al.[63] discussed
the current security challenges in container cloud systems, and
suggested multiple solutions for future development. Nordell [42]
proposed a systematic evaluation of CVEs and mitigation strategies
for the Kubernetes stack. Abbas et al.[1] designed PACED, a real-
time uses privileged monitor system to detects container escape
attacks. Li et al.[34] examined path misresolution vulnerabilities in
container systems and proposed kernel-based filesystem isolation
method to enhance container access control. Yang et al.[62] pro-
posed a novel abstract resource attack technique that can exhaust
host memory without breaking the container limit. McDonough et
al. [38] developed Torpedo to fuzz container cloud services using
the popular Linux kernel fuzzing framework syzkaller[26]. Tor-
pedo is specifically designed to detect out-of-band workloads in
multi-tenant container cloud services. While these studies focus on
specific domains of container cloud security, none of them provides
a comprehensive understanding of various bugs in CRSs.
Container Runtime Performance. The performance of CRSs has
also garnered much attention. Specifically, Avino et al.[2] tested
the performance of Docker under heavy computing workloads.
Mavridis et al.[37] evaluated the performance of Docker on vir-
tual machines such as KVM and HyperV. Espe et al.[23] conducted
a performance evaluation of CRSs using the self-developed tool
TouchStone to test the CPU and memory performance. Wang et
al.[57] researched the performance and isolation functionality of
the runc, gVisor, and Kata CRSs. Their assessment of performance
was based on several metrics, including the number of supported
system calls, startup time, and isolation functionality.
10 Conclusion
In this work, we conduct the first comprehensive study on bugs
of Container Runtime Systems by manually inspecting 429 related
bugs. We develop taxonomies for the symptoms and root causes of
these bugs, analyze their distributions, and evaluate the effective-
ness of existing test codes. The study reveals that CRSs have char-
acteristic bugs and only around 20% bugs are detectable through
built-in tests. These findings offer practical insights on improv-
ing the quality of CRSs. Based on our research, we also provide
recommendations for the use, development, and testing of CRSs.
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