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Verify All Traffic: Towards Zero-Trust In-Network
Intrusion Detection against Multipath Routing

Ziming Zhao, Zhaoxuan Li, Xiaofei Xie, Zhipeng Liu, Tingting Li, Jiongchi Yu, Fan ZhangB, Binbin Chen

Abstract—With the popularity of encryption protocols, ma-
chine learning (ML)-based traffic analysis technologies have
attracted widespread attention. To adapt to modern high-speed
bandwidth, recent research is dedicated to advancing zero-trust
intrusion detection by offloading feature extraction and model
inference into the network dataplane. Especially, with the rise
of programmable switches, achieving line-speed ML inference
becomes promising. However, existing research only considers a
single switch node as a relay to conduct evaluation. This is far
from real-world deployments involving multiple switches (given
that zero-trust security assumes that threats can originate from
anywhere, including within the network), particularly the multi-
path routing phenomenon that exists in practice. In this paper,
we reveal practical challenges in the context of enabling line-
speed model inference in the network dataplane. Furthermore,
we propose FCPlane, the forwarding and computing integrated
dataplane for zero-trust intrusion detection that aims to enable
efficient load balancing while providing reliable traffic analysis
results, even against multipath routing. The core idea is to
reconcile forwarding and computation to the flowlet level, for
which a tailor-made Markov chain model is designed. Based
on two public traffic datasets, we evaluate seven state-of-the-
art in-network traffic analysis models deployed in four types
of topologies (three with multipath routing and one without) to
explore performance impact and demonstrate the effectiveness
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Fig. 1. Illustrative explanation of in-network traffic analysis against multipath
routing. Note that the packets are simplified to unidirectional for clear
presentation in the diagram, the traffic is bidirectional in the real world.

of our proposal.

Index Terms—Zero-trust intrusion detection, multipath rout-
ing, programmable switches dataplane, in-network deployment

I. INTRODUCTION

Network traffic analysis is an important technology in
current Internet infrastructure, which can be used for network
management [1], intrusion detection system (IDS) [2], mal-
ware identification [3], etc. With the widespread application of
encryption protocols, traditional signature-based or payload-
based methods have encountered certain limitations [4]–[6].
As emerging solutions, machine learning (ML) models are
gradually being used to profile and analyze encrypted traffic
due to their good characterization and fitting capabilities [6]–
[8]. Some representative solutions [2], [4], [9]–[12] propose
marking user entities (e.g., IP addresses) based on traffic
detection results to form a blacklist or a whitelist. However,
this paradigm does not conform to the zero-trust security
concept [13], [14] for next-generation networks [15], given
that one of the core principles of zero-trust security is “Never
trust, always verify” [16]–[18].

In line with the zero-trust concept, network intrusion de-
tection systems should tend to verify all traffic rather than
marking priorities or privileges for certain user entities [4],
[9]. To verify all traffic, the first problem should advance the
online line-speed traffic analysis in the dataplane to adapt to
current high-speed bandwidth [19], instead of offline capture
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of traffic and execution of model inference on CPU/GPU [8].
Towards this end, a series of studies has been carried out
by practitioners and communities. For example, Kitsune [8]
puts lots of effort into making AutoEncoder-based detection
run efficiently, while it only supports ∼112 Mbps throughput,
which is a far cry from meeting the demand of modern network
bandwidth (e.g., 100 Gbps per port). To solve this problem,
offloading feature extraction and ML model inference into the
network dataplane (also as known in-network analysis [12]) is
a promising scheme. Particularly, the emerging programmable
switches allow user-customized packet processing logic in
a protocol-independent manner, it has been widely studied
among researchers and industry [12], [20], [21].

Although in-network ML-based traffic analysis has made
extraordinary progress, existing work ignores the impact of
multipath routing1, which is very common in real-world net-
works [23]–[26]. Figure 1 provides an intuitive example to
showcase the gap between the model development (in existing
research) and the real-world system deployment. The detection
scenarios in the existing research are shown in subfigure (a),
where two autonomous systems (ASes) are bridged through a
switch thus all traffic can be captured in switch 1 (i.e., without
considering multipath routing). However, the test scenarios in
real-world deployment are usually as subfigure (b), several
switches form a certain topology to support communication
between ASes. The multipath routing could result in perceiv-
ing incomplete traffic on a switch since some traffic could
pass other candidate links. Therefore, while in-network traffic
analysis has been extensively researched and holds promise as
a solution to advance zero-trust IDS, it still faces challenges
when deployed in real-world networks, e.g., the impact of
multipath routing on model robustness.

In this paper, we reveal new challenges (to advance zero-
trust IDS) in the context of opportunities to enable line-
speed model inference in the network dataplane. Specifically,
we first explore the magnitude of incomplete traffic induced
by multipath routing under different topologies and assess
the impact the multipath routing phenomenon has on ML
model performance, to provide new directions and guidance
regarding the development and deployment of ML models
within networks. Furthermore, this paper presents FCPlane,
a Forwarding and Computing integrated data Plane design
that efficiently manages network traffic, especially in the
presence of multipath routing. Our core idea is to reconcile
forwarding and computation to the flowlet level, and then
advance the forwarding module and the computing module
designs including Flowlet Timeout Value (FTV) determination
and dynamic routing strategies, as well as flowlet-level Markov
model design and in-network dataplane deployment for real-
time traffic analysis.

In summary, this paper makes three key contributions.
• We reveal the multipath routing challenge to advance

zero-trust IDS in the context of opportunities to enable
line-speed model inference in the network dataplane.

1Zero-trust IDS assumes that threats can originate from anywhere, including
the internal networking [14], [22]. Thus, in-network traffic analysis models
should be deployed into decentralized detection points, and the multipath
routing problem arises. More details are in § II and § III.

• We present FCPlane, a forwarding and computing inte-
grated dataplane design that aims to enable efficient load
balancing while providing reliable traffic analysis results
(even against multipath routing), to promote zero-trust
network IDS.

• We conduct a series of experiments to demonstrate
the challenges encountered by the in-network model,
regarding the intra-flow inconsistency of packet-based
models and the performance degradation of flow-based
models against multipath routing. Then, we implement
the prototype of forwarding and computing integrated
dataplane on our physical testbed. And we conduct
extensive evaluations to demonstrate the advantages of
the proposed scheme. The experiments show that our
proposal realizes ∼99% F1 score for intrusion/malware
detections even against multipath routing. As for the load-
balancing effect, our method can achieve a good Jain’s
fairness index compared with existing methods.

II. BACKGROUND AND MOTIVATION

A. Motivation

We first introduce the research motivation in the context of
zero-trust security. The high-level idea references Figure 2.
It describes the tenets of zero-trust security and then ex-
plains the zero-trust views and requirements in network IDS.
Subsequently, it introduces feasible schemes, i.e., in-network
model traffic analysis deployment strategy for verifying all
traffic. Finally, it proposes the multipath routing challenges
encountered by in-network models in practice.

(i) According to the Zero-Trust Security (ZTS) architec-
ture [27] published by the National Institute of Standards and
Technology (NIST), ZTS is a paradigm shift toward rethinking
the network security and protection of organizational assets.
ZTS involves several tenets [17], including while not limited
to the following aspects:

① Zero trust assumes there is no implicit trust granted
to assets or user accounts based solely on their physical or
network location (i.e., local area networks versus the internet)
or based on asset ownership (enterprise or personally owned).

② Zero trust provides a set of principles and concepts
around moving the Policy Decision Point (PDP) & Policy
Enforcement Point (PEP) closer to the resource. The idea is to
explicitly authenticate and authorize all subjects, assets, and
workflows that make up the enterprise.

③ Access to resources is determined by dynamic policy,
including the observable state of client identity, applica-
tion/service, and the requesting asset, as well as may include
other behavioral and environmental attributes.

④ For zero trust, the policy is the set of access rules based
on attributes that an organization assigns to a subject, data
asset, or application. These rules and attributes are based on
the needs of the business process and acceptable levels of risk.
Least privilege principles are applied to restrict both visibility
and accessibility.

⑤ All resource authentication and authorization are dynamic
and strictly enforced before access is allowed. This is a
constant cycle of obtaining access, scanning and assessing
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Fig. 2. Motivation for studying multipath routing with in-network models in
zero-trust network IDS.

threats, adapting, and continually reevaluating trust in ongoing
communication.

⑥ An enterprise should collect data about asset security
posture, network traffic, and access requests, process that data,
and use any insight gained to improve policy creation and
enforcement.

(ii) Considering the above tenets of zero-trust security
architecture, zero-trust views of a network are formed [27],
which introduces a series of requirements for network IDS.
Specifically, they include the following.

① The entire enterprise private network is not considered an
implicit trust zone. Assets should always act as if an attacker is
present on the enterprise network, and communication should
be done in the most secure manner available. In other words,
trust should not be automatically granted based on the device
being on enterprise network infrastructure. This entails actions
such as authenticating all connections and encrypting all
traffic.

② No resource is inherently trusted. Every asset must have
its security posture evaluated via a PEP before a request
is granted to an enterprise-owned resource. This evaluation
should be continual for as long as the session lasts. Subject
credentials alone are insufficient for device authentication to
an enterprise resource.

③ All connection requests should be authenticated and
authorized, and all communications should be done in the most
secure manner possible (i.e., provide confidentiality, integrity
protection, and source authentication).

④ Remote enterprise subjects and assets cannot fully trust
their local network connection. Remote subjects should as-
sume that the local (i.e., nonenterprise-owned) network is
hostile. Assets should assume that all traffic is being monitored
and potentially modified.

(iii) The above zero-trust views of network IDS requires
that all traffic should be inspected and verified in a real-
time manner [18], rather than marking priorities or privileges
for certain user entities (such as blacklist or whitelist) [4],
[9]. However, practitioners and communities find that the key

problem refers to offline capture of traffic/execution of model
inference cannot adapt to current high-speed bandwidth [19].
To solve this problem, offloading feature extraction and im-
planting ML model inference into the network data plane (also
as known in-network deployment [12]) is a promising and
feasible scheme, as summarized in § III-B.

(iv) Although in-network traffic analysis model deployment
has made extraordinary progress, existing work ignores the
impact of multipath routing in practice (as discussed in
§ II-B) [23]–[26]. Zero-trust IDS assumes that threats can orig-
inate from anywhere, including within the network [14], [22].
Thus, in-network traffic analysis models should be deployed
into decentralized detection points, and the multipath routing
problem arises.

The occurrence of multipath routing can be caused by
a variety of reasons, including link failures [28], network
topology changes [29], [30], routing policy adjustments [31],
[32], etc. Specifically, to cope with link failures, the scalability,
control, and isolation on next-generation networks (SCION)
end hosts use multi-path communication by default, thus
masking link failures to an application with another working
path [28]. Moreover, in real-time traffic applications, it is
often unacceptable to lose connectivity because of changes in
topology [30] or adjustments of routing policies [32] that ren-
der routes obsolete, multipath routing guarantees reliable end-
to-end connectivity [31]. Some factors affect the occurrence
probability of multipath routing, including network topology,
routing protocols, load balancing strategies, etc. From the
application layer to the link layer, the multipath characteris-
tics of different protocols vary with respect to latency, loss
sensitivity, reliability, resource reservation, and so on [23].
In addition, different multipath routing algorithms will also
lead to different path allocation results due to different path
selection strategies, as discussed in the prior art [23].

Therefore, multipath routing is indeed a common phe-
nomenon, which is also an unavoidable problem in the devel-
opment and deployment of in-network traffic analysis models
in practice, especially considering the decentralized node
deployment and detection of zero-trust IDS. To this end, this
paper focuses on the robustness of in-network traffic analysis
models against multipath routing, evaluating the performance
of a series of representative models in various (serial and
parallel) topologies. On the one hand, this paper reveals the
shortcomings of existing research solutions on in-network
traffic analysis models in practice (especially the robustness
against multipath routing phenomena). On the other hand, we
intend to propose a novel forwarding and computing integrated
dataplane to enable efficient load balancing while providing
reliable traffic analysis results (even against multipath routing),
to promote zero-trust IDS.

B. Practical Case

To advance the development and deployment of ML-based
models for zero-trust IDS in practice, we have launched an
in-network traffic analysis project with the local provincial
Internet Service Provider (ISP) in 2022. Its core network
contains over a hundred interconnected switches (five refer to
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TABLE I
EXISTING REPRESENTATIVE METHODS FOR IN-NETWORK TRAFFIC ANALYSIS.

Method Traffic Feature Model Primitive Deployment Bandwidth
Mousika [21] Packet-level Packet fields such as TTL, length Tree P4 Data plane ∼100 Gbps
Flowrest [19] Flow-level Statistical features of packet fields RF P4 Data plane ∼100 Gbps

NetBeacon [12] Flow-level Statistical features of packet fields Tree/RF/XGB P4 Data plane ∼100 Gbps
RIDS [11] Flow-level Packet length sequence RNN P4 Data plane ∼100 Gbps

FlowLens [20] Flow-level Packet size distribution histograms NB/XGB/RF P4 Data plane + Control plane ∼1 Gbps
DFNet [4] Packet-level Raw packet byte DNN→Tree DPDK Data plane ∼40 Gbps

Whisper [33] Flow-level Frequency domain features Clustering DPDK Data plane ∼13 Gbps
FCPlane (Proposed) Flowlet-level Packet fields such as flags, length Markov chain P4 Data plane ∼100 Gbps

1 FlowLens performs model inference in control plane.
2 Whisper leverages DPDK primitives.

programmable switches, and the others are not programmable),
involving more than 2000K active hosts. Specifically, we
choose the decision tree-based model [12], [19], [21] for
development and deployment. Based on the pre-collected
benchmark dataset (involving a series of common intrusion at-
tacks and legitimate business traffic of protected departments),
we trained the model and performed the offline test (including
directly connecting the sender side and receiver side through
a programmable switch) to achieve F1 score over 98%.

Subsequently, we deployed these in-network traffic analysis
models into five programmable switches of the ISP’s core
network. Then, we replayed the benchmark test traffic on the
link, while finding that the detection effect of the in-network
traffic analysis model (into the programmable switches data-
plane) was not satisfactory (usually below 60% F1 score). By
verifying the original traffic on the sender side (by comparing
the sent traffic and the traffic received on the switch node),
we found that complete traffic sessions cannot be observed
on these five programmable switch nodes (resulting in the
calculated feature shift and thus model misclassification).
This is mainly caused by the multipath routing phenomenon
(common in complex network topologies), that is, multiple
parts of traffic session through different links, resulting in
incomplete traffic captured on the programmable switch.

III. RELATED WORKS

Based on the detailed explanation of motivation in § II,
in this section, we introduce related work in terms of zero-
trust security, in-network ML-based traffic analysis models,
and multipath routing.

A. Zero-Trust Security

As traditional network perimeters dissolve and threats
evolve, the need for robust security frameworks becomes more
critical. Zero-Trust Security (ZTS) [13]–[15] is an emerging
paradigm that addresses these challenges by redefining trust
boundaries within a network. Zero-trust security is a strategic
approach that requires strict identity verification for every user,
device, and system attempting to access resources [34], [35],
whether inside or outside the network perimeter [14]. The core
principles [16] of ZTS include least-privilege access, never
trust, always verify, etc.

Building on the foundations of ZTS, zero-trust network IDS
takes a proactive stance in identifying and mitigating threats.

On the one hand, it needs to leverage in-network model infer-
ence to verify all traffic at line speed rather than marking user
entities with priorities or privileges. We will systematically
introduce the related work about in-network traffic analysis
in § III-B. On the other hand, zero-trust IDS operates on the
assumption that threats can originate from anywhere, including
within the network [14], [22]. This indicates that in-network
analysis models should be deployed in decentralized detection
points, and the multipath routing problem arises (details are
in § III-C).

B. In-Network ML-Based Models

Regarding the ML-based approaches for in-network traf-
fic analysis, researchers first focus on deploying decision
trees/random forests within the dataplane, given that tree-
based models are essentially a series of if-else conditional
branches, which are suitable for implementation with network
programming primitives. The early schemes [36]–[39] do not
provide switch hardware implementation and use the BMv2
emulator [40] instead, which results in the inability to adapt to
high bandwidth. The following work [12], [19], [21], [41], [42]
considers switch constraints and implements tree-based model
hardware deployment. Among them, Mousika [21] proposes
to deploy the Binary Decision Tree on the programmable
switches for packet-level classification2. NetBeacon [12] and
Flowrest [19] enable stateful flow classification based on the
multi-phase decision tree and random forests, respectively.
Moreover, FlowLens [20] leverages various ML models for
traffic analysis such as Naı̈ve-Bayes (NB), XGBoost (XGB),
and Random Forest (RF), while it performs model inference
in the control plane (made only ∼1Gbps bandwidth can
be saturated). As a recent art, RIDS [11] is the first in-
network IDS implementation to deploy recurrent neural net-
work inference directly on the programmable switch dataplane
via ternary matrices, tailor-made flow state maintenance, and
other hardware-friendly operations, similar to this there is
INDP [43]. Furthermore, there are some methods based on
the Intel DPDK [44]. DFNet [4] adopts the surrogate model
to convert the deep neural network (DNN) into a decision

2Packet-level classification has the problem of consistency check, given
traffic sessions perform field analysis and payload reorganization at the flow
level. When one packet is misclassified, the effectiveness of the entire flow
will be affected (could lead to unavailability of legitimate flow or defense
fails), thereby making the impact of misclassification worse. We provide more
details on the specific cases in § V-D.
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Fig. 3. The design overview of FCPlane. forwarding and computing integrated
design. The forwarding module involves flowlet abstraction and routing table
maintenance. The computing module is responsible for traffic representation
and deployed in-network model inference to generate results.

tree, and Whisper [33] computes frequency domain features
to perform clustering algorithms. In contrast, as a software-
based solution, DPDK’s bandwidth support capability is more
limited than hardware-based programmable switches. Overall,
we select 7 representative in-network traffic analysis models
for evaluation, summarized in Table I.

C. Multipath Routing

Multipath routing is an avant-garde strategy that capitalizes
on the redundancy present in contemporary network archi-
tectures to bolster the robustness and efficacy of data con-
veyance [45]. By pinpointing and harnessing multiple parallel
conduits within a network, multipath routing can mitigate
congestion and ameliorate load balancing [46]. This dispersion
can transpire at varying granularities, such as individual packet
level, by stream, or through more advanced techniques like
subflow tagging. The latter, as epitomized by Flowlet [47], pro-
vides heightened adaptability by enabling the segmentation of
a flow into several subflows that can be directed autonomously
via divergent avenues.

Furthermore, B4 [48] combines existing routing protocols
and traffic engineering services to accommodate elastic traffic
demand. A custom implementation of ECMP hashing acts
at the level of the flow to perform load balancing. B4 is
also a hybrid strategy for centralized traffic engineering that
relies on the separation between the data and control planes.
HEDERA [49] monitors active flows and seeks to obtain
a global view of routes and traffic to estimate the demand
of flows in data centers. In summary, multipath routing is
ubiquitous in the real world, so the impact of multipath routing
should be considered in the design and evaluation of in-
network models [50].

IV. FORWARDING AND COMPUTING INTEGRATED DESIGN
FOR ZERO-TRUST IDS

In this section, we first introduce the high-level workflow
of forwarding and computing integrated dataplane design for

Algorithm 1 Flowlet-based Zero-Trust IDS Workflow
1: Input: Client traffic
2: Output: Analyzed and routed traffic
3: procedure TRAFFIC PROCESSING
4: for all sessions s in traffic do
5: Segment s into flowlets f
6: for all flowlets f do
7: Extract flowlet header metadata
8: if time interval exceeds FTV then
9: Link reallocation for a new flowlet

10: end if
11: Forward f to the integrated dataplane pipeline
12: end for
13: end for
14: Execute In-network model on each switch node
15: Ensure reliable results even with multipath routing
16: end procedure

zero-trust IDS. Then, we elaborate on the design details in
terms of the forwarding module and computing module.

A. Overview

The forwarding and computing integrated dataplane design
overview of FCPlane is shown in Figure 3, it allows for the
efficient analysis and routing of network traffic, particularly
when dealing with multipath routing. In this design, the client
traffic session is segmented into discrete units called flowlets.
Each flowlet represents a portion of a network session and
carries metadata that can be used for analysis and routing
decisions. In Algorithm 1, the flowlet processing involves
several key steps: (i) Segmentation. Client traffic is divided
into flowlets, each containing a series of packets that are part
of the same network session. (ii) Metadata extraction. For each
flowlet, metadata such as the 5-tuple index (source IP, desti-
nation IP, source port, destination port, protocol), the previous
timestamp, and the packet number are extracted. (iii) Flowlet
maintenance. If the time interval between packets within a
flowlet exceeds the predefined Flowlet Timeout Value (FTV),
the flowlet is considered complete, and a new flowlet begins.
(iv) Dataplane pipeline. Flowlets are then passed through the
dataplane pipeline for further analysis and routing decisions.

This forwarding and computing integrated dataplane design
has advantages, including efficient use of network resources
through dynamic routing and in-network processing and en-
hanced security via real-time traffic monitoring and detection.

B. Forwarding Module

The forwarding module focuses on how to cut traffic into
flowlets of appropriate sizes, and then execute routing strate-
gies and dynamic adaptation.
Flowlet Abstraction. For flowlet-based routing, the Flowlet
Timeout Value (FTV, denoted as δ) is a critical parameter that
significantly influences the performance of load balancing. The
determination of the FTV is essential for adapting to varying
traffic loads and for preventing performance degradation due
to frequent oscillations or shifts of flows between paths.
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A suitable FTV threshold should meet the following con-
ditions to ensure effective network traffic management and
analysis. On the one hand, the FTV should be set in such
a way that it promotes the generation of flowlets with as
uniform a distribution as possible. This uniformity allows for
efficient link utilization, even when employing straightforward
Equal-Cost Multi-Path (ECMP) routing strategies. The goal is
to balance the traffic load across different paths, minimizing
the waste of bandwidth and avoiding congestion. On the other
hand, the FTV must not be set too small, as this could result in
overly fragmented flows and additional reordering operations.
More importantly, these small flowlets might not carry enough
information for subsequent in-network traffic analysis models.
Taking both of the above points into consideration is an
important step in achieving forwarding-computing integration.

For the first condition, we tend each flowlet to have a similar
total byte size. Let F be a set of flowlets, where each flowlet
fi ∈ F is characterized by the total byte size B(fi) of all
packets within the flowlet. The objective is to minimize the
variance of the total byte sizes across all flowlets, which leads
to a more uniform distribution of flowlet sizes. We define
the uniformity U of flowlet generation as the inverse of the
variance of the total byte sizes:

U =
1

Var(B(F ))
(1)

where B(F ) is the set of total byte sizes for all flowlets in F ,
and Var denotes the variance. The goal is to choose an FTV
that minimizes the variance of the flowlet sizes, leading to a
uniform distribution:

min
FTV

Var(B(F )) (2)

This optimization problem can be approached by setting the
FTV such that the expected total byte size E[B(fi)] of each
flowlet fi is approximately equal to the average total byte size
B̄ of all flowlets:

E[B(fi)] ≈ B̄ =
1

|F |
∑
f∈F

B(f) (3)

where |F | is the total number of flowlets.
In other words, the adjustment of the FTV aims to balance

the trade-off between the granularity of flowlets and the
uniformity of their sizes, ensuring that consecutive flowlets
fi and fi+1 have similar total byte sizes:

|B(fi)−B(fi+1)| ≤ ϵ (4)

where ϵ is a small threshold value that represents the allowable
difference in byte sizes between consecutive flowlets.

For the second condition, that flowlet should maintain
enough information for model analysis, we construct a
Discrete-Time Markov Chain (DTMC) model [5]. Let G =
{V,E} denote the state diagram of the DTMC, where V
is the set of states (representing the values of per-packet
features) and E denotes the edges (representing transitions
between states). We define s = |V | as the number of distinct
states, and let W = [wij ]s×s denote the weight matrix of G.
The transition probabilities are given by a normalized weight
matrix P = [Pij ], where Pij =

wij

wi
and wi =

∑s
j=1 wij .

The entropy rate of the DTMC, denoted by H[G], is the
expected Shannon entropy increase for each step in the state
transition, which quantifies the uncertainty or information
content of the flowlets. The entropy rate can be calculated
using the following formula:

H[G] = −
s∑

i=1

s∑
j=1

wij log(wij) +

s∑
i=1

wi log(wi) (5)

The determination of the optimal FTV can be framed as an
optimization problem where the objective is to maximize the
information entropy captured by the DTMC model under the
limited difference in byte sizes between consecutive flowlets.
Routing Strategy. Our routing strategy leverages the elas-
ticity of flowlets to achieve resilient load balancing. First,
each switch maintains a flowlet table with entries indexed
by the flow’s 5-tuple, i.e., {SourceIP, DestinationIP,
Sourceport, Destinationport, Protocol}. Then, each entry
in the flowlet table will store the previous timestamp and
number of packets. Upon the arrival of a packet, the switch
hashes the 5-tuple to find the corresponding flowlet table entry.
If the entry is valid (i.e., the time interval is active), the
packet is forwarded according to the stored port. If not, a new
flowlet is initiated, and the switch reselects an output port and
forwarding action according to the load-balancing algorithm.

Load balancing decisions are made at the granularity of
flowlets, the probability P() of choosing path Pj as follows,

P(Pj) =
Cj∑N
i=1 Ci

(6)

where Cj is the capacity of path Pj , and N is the total number
of paths.
Dynamic Size Adaptation. The FTV for each flowlet is
calculated dynamically based on the number of forwarded
packets at switches. This is inspired by the fading mech-
anism [51], where the FTV fades (or decreases) as more
packets are forwarded, allowing for timely rerouting of traffic
under different workloads. The FTV is adapted using a shift
operation that effectively represents the fading of the timeout
value. This method is lightweight and can be operated in the
dataplane of programmable switches. For a flow and an initial
FTV δ0, the adapted FTV δ can be calculated using a right
shift operation as follows:

δ = δ0 ≫ 1 (7)

where ≫ denotes the right shift operation, the result of the
shift operation effectively reduces δ0.

C. Computing Module

The computation module is mainly responsible for ex-
tracting field information from traffic and building a series
of Markov chain models for traffic classification. We next
introduce the specific model design and deployment pipeline.
Traffic Representation. In the context of encrypted traf-
fic analysis, we can utilize various packet header fields to
construct these states. For instance, we could use packet
length sequences and TCP flag fields for traffic representation.
(i) Packet length sequences are derived from the size of
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Fig. 4. Illustrative explanation of Markov models.

consecutive packets within a flow. As the most representative
feature in previous work [6], [7], [33], packet length sequence3

has been proven useful for guiding traffic detection tasks. (ii)
TCP flag fields, such as URG, ACK, PSH, RST, SYN, and
FIN, provide critical information about the state and control
aspects of a TCP connection. By analyzing the patterns and
transitions of these flags within a flow, we can infer the nature
of the traffic. For instance, the SYN flag typically indicates
the initiation of a connection, while the FIN flag signals
the termination. Meanwhile, some malicious traffic may have
specific flag sequence patterns, such as TCP-based DDoS [52].
Flowlet-Level Analysis Model. Given we tend to analyze
traffic at the flowlet level, the first-order Markov chain model
is considered to be employed for traffic modeling. The ratio-
nale behind choosing a first-order Markov chain that lies in
its future state prediction depends solely on the current state,
rather than on the sequence of past events. By segmenting
a session into multiple flowlets, we can capture localized
patterns and behaviors within network traffic. Each flowlet
retains sufficient information to allow the Markov chain model
to make informed predictions about the subsequent flowlet,
based on the current state.

Figure 4 provides two distinct first-order Markov chain
models, each representing a probabilistic system with tran-
sitions based on specific network traffic characteristics. The
left subfigure is constructed based on the sequence of packet
lengths. In this model, each packet length is a state, and the
transitions between states represent the probabilities of one
packet length following another. For instance, a packet with a
length of 66 bytes has a 52% probability of being followed by
a packet with a length of 60 bytes. This particular transition
could correspond to the three-way handshake process in the
TCP protocol. The right subfigure is based on the TCP flags
of packets. TCP flags such as SYN, ACK, PSH, FIN, RST,
and URG are crucial for controlling the state of a TCP
connection and communication between hosts. For example,
the presence of a SYN flag may be followed by an ACK
flag with a certain probability, indicating the establishment
of a connection. Similarly, a FIN flag could be followed
by an ACK, signaling the termination of a connection. The
model helps in visualizing the typical progression of TCP flag
sequences and can be used to detect potential security threats.

3Previous arts have shown that packet length sequences as stateful fea-
tures [6], [7], [11] contain sufficient information entropy for traffic classifica-
tion [33], and these features are widely applicable to protocol types [4] such
as TCP, UDP, ICMP, HTTP, DNS, FTP, SSH, etc.

Fig. 5. The forwarding and computing integrated pipeline.

In-Network Deployment. In Figure 5, we depict the in-
network deployment for the proposed flowlet-level Markov
model. The pipeline is designed to process incoming traffic and
classify it based on the characteristics extracted from packet
headers. The process begins with matching the traffic against
table entries based on the 5-tuple fields, which determines
the flowlet index. This index directs the packet flow through
a series of state tables designed to extract specific features
from the packet headers. The pipeline includes dedicated state
tables (note that the state table and routing table can be on
the same switch or different switches), each associated with
a respective Markov chain model (capture the probabilistic
behavior inherent in the traffic flows). The model parameters,
specifically the transition probabilities, are pre-trained and
scaled by a factor of 103 to accommodate the integer-only
arithmetic of the programmable switch hardware (floating
point numbers are not supported). The length state table pro-
cesses the packet length sequences. For each packet, the length
is extracted and used to consult the corresponding Markov
model parameters. Similarly, the flag state table focuses on the
TCP flag fields, such as ACK, SYN, FIN, etc. The state table
maps the observed flag patterns to states in the Markov model,
computing the sum of probabilities. This aggregate (sum of)
probability serves as a fingerprint for the traffic flow, which is
then matched against a predefined set of classification criteria
to determine the flow’s category. Based on the classification
result, the pipeline configures the appropriate action for the
flowlet (such as forwarding or dropping). Overall, it completes
the integration of forwarding logic and computing analysis for
traffic in the programmable switch dataplane.

V. EVALUATION

In this section, we assess the multipath routing phenomenon
and evaluate the impact on in-network ML-based traffic anal-
ysis models (including existing baselines and our proposed
flowlet-based zero-trust IDS). To this end, we develop four
topology scenarios on our physical testbed. For two public
traffic datasets, we replay their traces and capture the traffic
on each switch node in the topology for model performance
tests. Specifically, the experiments are designed to answer the
following research questions.
RQ1 (§ V-C). How do existing flow-level in-network models
perform when against multipath routing?



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, JUNE 2024 8

Fig. 6. The four test topology scenarios. Different colors in each topology
indicate candidate links.

RQ2 (§ V-D). How do existing packet-level in-network
models present in terms of result consistency?
RQ3 (§ V-E). How does the proposed flowlet-level model
perform compared to the baseline?
RQ4 (§ V-F). How are the traffic distribution effect and
the dataplane throughput of forwarding-computing integrated
dataplane for zero-trust IDS?

A. Experimental Setup

Testbed and Tool. In our physical testbed, we build
four topology scenarios as shown in Figure 6, including
three (Topo1: “Parallel-2”, Topo2: “Parallel-4”, and Topo3:
“Serial-Parallel-4”) with multipath routing in subfigure (b)-
(d) and one (Base) without, i.e., subfigure (a). Topo2 and
Topo3 are the parallel expansion and series expansion of
Topo1, respectively. All switch nodes reference the Tofino
switch (Wedge 100BF-32X) with 32 100 Gbps ports. The
programmable switches employ per-packet Equal-Cost Multi-
Path (ECMP) by default [53]. The sending/receiving hosts
are equipped with 100 Gbps Mellanox ConnectX-5 network
cards and Ubuntu 20.04.1. MoonGen [54] is used to replay
PCAP traffic. For the initial value determination of Flowlet
Timeout Value (FTV) δ, we use the Z3 SMT solver [55]
to maximize the optimization objective of § IV-B. FCPlane
deploys dynamic size adaptation for FTV by default, as
introduced in § IV-B. In addition, we also conduct the ablation
experiments with different FTV settings in § V-E.
Model and Dataset Selection. As introduced in § III-B, we
select seven representative in-network traffic analysis models
for evaluation, summarized in Table I. Particularly, XGB
is chosen for NetBeacon [12] and FlowLens [20] because
XGB achieves the best performance in the original paper.
For model inference, FlowLens performs in the control plane,
Whisper [33] and DFNet [4] are deployed in DPDK, and the
others are all executed on switches, which is consistent with
their original papers.

The datasets used for evaluation are in Table II, including
two intrusion detection datasets and a malware identification
dataset. (i) IDS2017 and IDS2018 [56] include various in-
trusion attacks, and a series of legitimate interactions traffic.
(ii) USTC-TFC dataset [57] contains network traffic generated
by ten malware (e.g., Cridex, Zeus) and ten categories of

TABLE II
DATASETS USED IN OUR EVALUATION.

ID
S

17
&

18

Benign Human interaction traffic produced by B-Profile
DDoS UDP, TCP, HTTP
DoS Hulk, GoldenEye, Slowloris, Slowhttptest, Heartbleed

Botnet Remote shell, File, Key logging
Patator FTP, SSH

Web Brute-force, XSS, SQL inject

U
ST

C Benign BitTorrent, Facetime, FTP, Gmail, MySQL, Outlook,
Skype, SMB, Weibo, World of Warcraft

Malware Cridex, Geodo, Htbot, Miuref, Neris,
Nsis-ay, Shifu, Tinba, Virut, Zeus

benign applications (e.g., Facetime, Skype) from real-world
connections. Considering that some baselines do not support
multiple classifications, we perform binary classifications (i.e.,
distinguish benign and malicious) in all models for a fair
comparison. If not otherwise stated, the dataset division ratio
refers to train : test = 6 : 4.

B. Evaluation Metrics

The evaluation metrics involve three aspects. (i) For the
model classification performance, we mainly use the Accuracy
Acc and F1-score F1. (ii) For the load balancing effect, we use
Jain’s fairness index to evaluate the uniformity of the traffic
distribution in each switch, the details are in § V-F. (iii) We
statistics the multipath routing probabilities and calculate the
completeness of flow. Given a group of switches contains
n equivalent candidate nodes GS = {S1, S2 · · ·Sn}, e.g.,
Switches 1 & 2 & 3 & 4 in Topo2 (Figure 6). We capture traffic
of each switch Si, i ∈ [1, n], denoted as Ti. For traffic Ti, it can
be divided based on the 5-tuple session index (i.e., {Source
IP, Source Port, Destination IP, Destination Port, Protocol})
to obtain the flow list Li = {f i

1, f
i
2 · · · f i

m} that consists m
flows. For any f i

q ∈ Li, if its index (i.e., f i
q.index) appears

in the traffic Tj of any other switch Sj (i.e., j ̸= i), we term
f i
q as the flow with multipath routing and the packets of f i

q

are packets with multipath routing4. Then, we can calculate
the proportion of packet and flow in which multipath routing
occurs. Specifically, for switch Si, the flow ratio of multipath
routing RF is computed by

Ri
F =

∑len(Li)
q=1 {1|∃j, j ̸= i, f i

q ∈ Li, f
i
q.index ∈ Tj}

len(Li)
(8)

and the packet ratio of multipath routing RP of switch Si is

Ri
P =

∑len(Li)
q=1 {len(f i

q)|∃j, j ̸= i, f i
q ∈ Li, f

i
q.index ∈ Tj}∑len(Li)

q=1 {len(f i
q), f

i
q ∈ Li}

(9)
Furthermore, we define the completeness of traffic flows

CF as the actual received packets divided by the expected

4The 5-tuple session without multipath routing phenomenon refers to all
its forward and backward packets traversing the same link. Therefore, if a
flow appears on at least two equivalent switch nodes, multipath routing has
occurred.
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Fig. 7. Intuitive explanation of the multipath routing probabilities and the
completeness of flow calculations.

received packets. Therefore, the average Ci
F of switch Si can

be calculated as

Ci
F =

∑len(Li)
q=1 {len(f i

q)/(
∑n

j=1 {len(f j
q )|∀j, Is(f i

q, f
j
q )})}

len(Li)
(10)

where Is(f
i
q, f

j
q ) refers to the flows possess same 5-tuple

index, i.e., f i
q.index == f j

q .index.
We provide intuitive illustrations to explain the computation

process of multipath routing probabilities and flow complete-
ness in Figure 7. The architecture is better to read bottom-up.
Consider arriving traffic involves 4 different sessions (denoted
as 4 colors, i.e., red, blue, purple, and green), their packets
will be forwarded to switch 1 or switch 2. The middle part
of Figure 7 shows that there are 5 packets passing through
switch 1 (including red, blue, purple, and green packets), and
5 packets passing through switch 2 (including blue, green, and
purple packets). The bottom of the figure shows the calculation
process of the three metrics. (i) According to Eq. (8), RF

calculates the ratio of flows that multipath routing occurs.
The RF in switch 1 is 75.00% (given the red session only
appears in switch 1, there is no multipath routing for the red
session), and in switch 2 is 100.0% (given all blue, green,
and purple sessions with the multipath routing phenomenon).
(ii) According to Eq. (9), RP calculates the ratio of packets
that multipath routing occurs. The RP in switch 1 is 80.00%
(given the red packet do not have multipath routing, accounting
for 20.00%) and in switch 2 is 100.0% (all packets are in
the multipath routing session). (iii) According to Eq. (10),
CF calculates the completeness of traffic flows. The CF (the
mean completeness of all sessions) in switch 1 is 60.4%, i.e.,
(50.0% + 66.6% + 25.0% + 100%) ÷ 4 and in switch 2 is
52.8%, i.e., (50.0% + 33.3% + 75.0%)÷ 3.

In general, the lower the flow ratio RF , the more sessions
there are without multipath routing (such as the red session
in Figure 7), which will also lead to a lower packet ratio
RP , because the sessions without multipath increase the
denominator in the calculation formula Eq. (9). Meanwhile, the

TABLE III
EVALUATE MULTIPATH ROUTING RATIOS OF THREE TOPOLOGIES. THE

LOWER THE MULTIPATH RATIO (RP AND RF ), THE HIGHER FLOW
COMPLETENESS (CF ). BOLD REFERS TO THE HIGH MULTIPATH RATIO.

Scenario
Node

IDS17/18 USTC-TFC
RP ▼ RF ▼ CF ▲ RP ▼ RF ▼ CF ▲

To
po

1 Switch1 92.32% 51.22% 74.15% 99.74% 98.43% 50.65%
Switch2 93.21% 53.07% 73.72% 99.63% 98.25% 51.01%

To
po

2 Switch1 94.03% 67.40% 58.80% 99.80% 99.32% 26.49%
Switch2 94.51% 70.75% 56.70% 99.96% 99.88% 25.36%
Switch3 95.65% 73.13% 47.19% 99.84% 99.56% 26.18%
Switch4 95.46% 73.56% 55.22% 99.79% 99.38% 26.41%

To
po

3 Switch1 94.75% 58.93% 70.44% 99.68% 98.49% 51.07%
Switch2 95.13% 61.20% 69.50% 99.70% 98.49% 50.43%
Switch3 95.11% 61.90% 69.22% 98.30% 96.33% 51.78%
Switch4 95.17% 63.33% 68.16% 98.52% 96.81% 51.65%

calculation result for average flow completeness of all sessions
CF will be increased, since the flow completeness of a single
session without multipath routing is 100%. The experimental
results on the public dataset also indicate the relationship
between these metrics, as shown in Table III. Note that the
above correspondence for three metrics is not immutable, due
to the calculation of multipath routing probability and flow
completeness also depending on the length of each session
(i.e., the number of packets included). For example, in the
calculation for the flow ratio RF and the packet ratio RP of
multipath routing, the numerator and denominator correspond
to flow count and packet count, respectively. Therefore, the
ratio for the packet number from the session with/without
multipath routing will affect the calculation results and impact
the increase/decrease relationship of metrics.

C. Flow-Level Model Evaluation (RQ1)

To test the flow-based model, we first calculate the multipath
routing probabilities under various topological scenarios and
then analyze the impacts on the flow-based traffic analysis
baselines.

1) Multipath Routing Ratio Evaluation: First, we evaluate
the ratio of multipath routing based on four topologies in
Figure 6. We calculate the average completeness of traffic
flows CF , flow-level multipath ratio RF , and the packet-level
one RP for each switch node. The results are summarized
in Table III, the higher RF and RR mean greater multipath
probability, meanwhile, the flow completeness CF will be
low. For packet-level ratio, RR results of all switch nodes
are over 90% for two datasets. For flow-level ratio, it is clear
that RF results of the IDS17/18 dataset are generally lower
than that of the USTC dataset. This could be attributed to
exist some short flows (the flow contains few packets) in
IDS17/18, or the interval between intra-flow packets being
long, resulting in not occurring multipath routing in some
flows. About the completeness of flow, we observe that CF

is strongly correlated with RF and the number of candidate
switches (notated as n). Generally, the theoretical value of
CF is 1 − RF + RF /n, where 1 − RF corresponds to the
flow without multipath routing, and RF /n refers to flows
with multipath routing equiprobability among n switches. For
example, for the IDS17/18 dataset, RF of two switches in
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TABLE IV
THE ACCURACY AND F1 SCORE RESULTS (%) OF FLOW-LEVEL MODELS IN BASE AND THREE MULTI-PATH SCENARIOS.

IDS Base Topo1: Parallel-2 Topo2: Parallel-4 Topo3: Serial-Parallel-4
Switch1 Switch2 Switch1 Switch2 Switch3 Switch4 Switch1 Switch2 Switch3 Switch4

Model Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Flowrest 99.01 99.02 91.83 91.87 92.01 91.73 82.50 82.10 81.48 81.96 80.99 80.51 80.59 80.57 84.40 84.67 83.61 84.20 80.95 81.36 80.93 80.87

NetBeacon 96.19 96.61 81.82 81.84 81.07 81.69 70.64 71.09 69.41 70.20 69.07 69.41 68.11 68.92 73.34 73.40 72.39 73.07 67.96 68.13 68.01 67.89
RIDS 99.02 99.03 90.87 90.96 90.40 90.41 78.81 79.06 78.09 78.89 77.44 77.51 76.70 77.63 81.36 82.44 81.03 81.54 77.22 78.28 76.98 77.36

FlowLens 99.13 99.35 72.26 77.50 71.26 76.25 46.12 52.55 42.73 50.23 41.19 49.15 40.45 48.75 52.69 58.50 50.69 57.34 39.68 47.58 38.22 47.43
Whisper 98.42 98.93 64.34 69.11 63.46 67.89 43.51 48.07 40.80 45.22 38.95 43.29 38.95 43.27 50.13 54.26 48.19 53.05 35.05 41.00 33.99 40.14

USTC Base Topo1: Parallel-2 Topo2: Parallel-4 Topo3: Serial-Parallel-4
Switch1 Switch2 Switch1 Switch2 Switch3 Switch4 Switch1 Switch2 Switch3 Switch4

Model Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Flowrest 99.13 98.92 88.79 86.92 88.73 86.68 75.10 75.01 75.62 74.90 75.12 75.13 75.23 75.19 75.33 75.30 75.82 74.87 75.69 75.12 75.77 75.02

NetBeacon 98.58 98.53 81.96 81.73 81.41 82.09 66.49 66.05 65.88 65.44 66.60 65.65 65.94 66.48 66.63 66.26 66.48 66.17 66.34 66.22 66.35 65.92
RIDS 99.18 98.99 85.49 83.84 86.44 83.63 73.28 71.46 73.35 72.21 72.90 72.26 73.72 72.00 74.12 72.38 73.64 72.11 74.10 72.63 73.33 71.92

FlowLens 99.25 99.22 62.83 65.25 63.07 65.88 47.39 51.78 46.93 51.75 47.56 51.06 47.64 51.79 47.78 52.05 47.59 52.19 47.99 51.91 47.16 51.63
Whisper 94.85 93.95 77.95 74.31 77.59 74.17 60.51 53.29 60.56 53.12 60.58 52.41 60.04 53.29 60.27 53.60 60.56 53.19 60.87 53.31 61.03 53.79

Fig. 8. A case study from the flow-based feature perspective.

Topo1 are ∼50%, and their CF results are ∼75% (i.e.,, 1-
50%+50%/2). Also, for the USTC dataset, RF of four switches
in Topo2 are ∼100%, and their CF results are ∼25% (i.e.,,
1-100%+100%/4). As expected, the greater the number of
candidate switches, the greater the multipath probability. From
the perspective across different topologies, the greater the
number of parallel switches, RF will increase significantly,
and CF will drop significantly (corresponding to Topo1 and
Topo2). Expansion of serial links almost does not affect CF .
Overall, at the packet level, the multipath routing ratio RP

generally tends to be 100% in Topo1-Topo3. Flow-level ratios
vary significantly between different datasets, mainly due to the
presence of short flows and intra-flow packet distribution being
diverse. Furthermore, the flow completeness is strongly corre-
lated flow-level ratio and the number of candidate switches.

2) Impact on Model Performance: As stated in Table I,
the flow-level models include Flowrest, NetBeacon, RIDS,
FlowLens, and Whisper. We evaluate these models in various
switch nodes in different topology scenarios and without
multipath routing (denoted as “Base” in Tabel IV), to explore

Fig. 9. Case study for packet-level models.

18.40
25.08

16.31 13.04

IDS USTC IDS USTC

(a) Mousika (b) DFNet

Fig. 10. Evaluation results of packet-level models.

the influence on their classification performance by multipath
routing. From Tabel IV, we find that FlowLens presents the
best accuracy and F1 score without multipath routing, since
FlowLens only extracts features on the data plane while
performing lossless model inference in the control plane
(which results in only ∼1Gbps bandwidth could be saturated
in Tabel I). NetBeacon and Whisper perform worst on IDS
and USTC datasets, respectively.

When multipath routing occurs, the overall robustness
reference Flowrest > RIDS > NetBeacon > FlowLens ≈
Whisper (FlowLens is the worst in USTC and Whisper is the
worst in IDS). We could get some deep insights from their
feature calculation process. Figure 8 displays the generated
feature based on the complete (black line on the left) and
incomplete (caused by multipath routing, red line on the right)
traffic. Some insights are summarized below. (i) Statistics-
based features tend to be more robust because some feature
values may not change even if the traffic is incomplete,
e.g., “len.min” in Flowrest and “ttl.min” in NetBeacon. (ii)
Sequence-based features (for RIDS) will be affected to a
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Fig. 11. The detection results (%, average by switches) of our proposed method and flow-based models in base and three multipath scenarios.

certain extent, manifested in that only some subsequences
can be retained due to incomplete traffic. (iii) FlowLens uses
histogram distribution as the feature, which is easily changed
due to missing parts of the flow, resulting in distribution drift.
(iv) Features based on the frequency domain (for Whisper)
are also not robust enough because missing packets in the
time domain will directly change the results of the Fourier
transform. (v) Noteworthy, NetBeacon designs a multi-phase
model inference, which applies different models when the
number of intra-flow packets changes. Such a design will
cause the model inference point [12] to shift when packets are
missing, thereby introducing additional classification loss. In
conclusion, for in-network traffic analysis, existing solutions
have been significantly affected (decrease 20%∼50%).

D. Packet-Level Model Evaluation (RQ2)

Since packet-level models do not need to compute features
based on 5-tuple flows, they are indeed not directly affected
by multipath routing. However, we would like to clarify that
existing packet-level approaches have practical issues in the
real world. The main problem is that a false positive or false
negative at the packet level may affect the availability of the
entire flow or the defense fails. We illustrate in detail based
on two specific examples in Figure 9. In subfigure (a), we
find that the attack process of the FTP patator involves the
“USER iscxtap” request and the “Please specify the password”
response. However, these two packets also appear in benign
interactions, filtering these two packets will cause legitimate
user requests to be blocked all the time. In subfigure (b), a
benign instance includes a TCP packet that carries [RST, ACK]
flags. However, this [RST, ACK] packet can be used to launch
the ACK-RST DoS attack [58]. This indicates some attack
traffic will be allowed causing defenses to fail.

As the above practical considerations, for the packet-
level model, we calculate the classification performance orig-
inally obtained according to each packet and also calcu-
late accuracy that guarantees intra-flow consistency (the cor-
rect packets reference if all intra-flow packets are correctly

classified). The results are summarized in Figure 10, it is
clear that the accuracy of packet-level models drops signif-
icantly (up to 25.08%) after the intra-flow consistency check.
Specifically, Mousika presents 97.05%→78.65% in IDS and
96.41%→71.33% in USTC, DFNet presents 98.54%→82.23%
in IDS and 99.00%→85.96% in USTC. Therefore, packet-
level models have been overestimated in previous work, with
a large gap from practical applications. In real-world scenarios,
the packet-level analysis model has two potential risks. On the
one hand, a false positive report for a packet of the legitimate
flow, affects the availability of the entire session. On the other
hand, some packets of the attack session are missed (i.e., the
false negative), resulting in continuous defense failure.

E. Flowlet-Level Model Evaluation (RQ3)

We evaluate flowlet-based FCPlane and compare it with
flow-based and packet-based models.

1) Compared with Flow-Level Models: We report the de-
tection results for the IDS and USTC datasets, as shown in
Figure 11. It is clear that the performance of FCPlane is
basically unaffected on the base and three multi-path scenarios.
For example, compared with “Topo2” and “Base” for IDS
dataset, our accuracy is only reduced by 0.2%, while the
five flow-based baselines drop by 17.6%∼57.8%. The results
for the USTC dataset are similar. Particularly, the precision
results of NetBeacon, FlowLens, and Whisper drop rapidly
in the IDS dataset as the probability of multipath routing
increases. This may be attributed to the fact that multipath
routing causes their features to drift, which results in a large
number of false positives in legitimate traffic, leading to
lower precision scores. Overall, the forwarding and computing
integrated dataplane design in FCPlane ensures that flowlets’
packets can be assigned to the same switch node, thereby
supporting the flowlet-level Markov chain model to accurately
identify traffic. As for the slight variation in performance under
different topologies, it could be due to different proportions
of packet loss, retransmission, and out-of-order (as discussed
in § VI-B).
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TABLE V
THE PERFORMANCE RESULTS (%) OF OUR PROPOSED METHOD AND

PACKET-LEVEL MODELS AFTER CONSISTENCY CHECK.

IDS Original packet-level Consistency check
Method ACC Pre Rec F1 ACC Pre Rec F1
Mousika 97.05 95.72 98.50 97.09 78.65 75.33 85.20 79.96
DFNet 98.54 97.97 99.15 98.56 82.23 79.28 87.25 83.08

FCPlane 99.02 98.85 99.25 99.05 98.89 98.61 99.15 98.88

USTC Original packet-level Consistency check
Method ACC Pre Rec F1 ACC Pre Rec F1
Mousika 96.41 95.61 97.27 96.43 71.33 69.05 77.33 72.96
DFNet 99.00 98.80 99.20 99.00 85.96 83.07 90.27 86.52

FCPlane 99.26 99.07 99.47 99.27 99.12 99.07 99.20 99.13

Fig. 12. The ablation experiments with different FTV settings.

2) Compared with Packet-Level Models: Then, we compare
with the packet-level baseline model, the original results and
those after consistency check are organized in Table V. In
contrast to Mousika and DFNet, our performance degrades
only slightly after the consistency check. For example, our F1
results are reduced by 0.17% and 0.14% on the IDS and USTC
datasets respectively. And the precision results decrease by
less than 0.25% on two datasets, which indicates that flowlet-
based FCPlane does not introduce many false positives, thus
supporting the availability of legitimate traffic. In general,
flowlets in FCPlane have enough packet sequence information
for the model to produce reliable results, compared to packet-
level models that only use individual packets.

3) Ablation Experiment on FTV Setting: Next, we develop
ablation experiments by changing the FTV setting. Consistent
with previous work [51], we set FTV to {1 × RTT, 3 ×
RTT, 5×RTT, 7×RTT, 9×RTT} respectively, where RTT
refers to the Round-Trip Time. As shown in Figure 12, when
FTV is set to 1×RTT and 3×RTT , the performance of the
Markov chain model suffers some loss. As FTV increases, the
model performance gradually improves and stabilizes. This
can be explained that when FTV is too small, the packet
sequence contained in the flowlet becomes shorter, and thus
cannot provide enough information for Markov chain model
classification. Nevertheless, even with FTV set to 1×RTT , our
scheme still achieves 95.99% and 94.86% for IDS and USTC
datasets. Furthermore, we plot the results of adaptive size
adaptation (default configuration in FCPlane) as horizontal
lines in Figure 12. It is clear that F1 results (for two datasets)
with adaptive FTV are very close to that of 7 × RTT (the
difference is less than 0.03%). Particularly, adaptive FTV is
a dynamic strategy that can be adjusted according to the
throughput status to make flowlets more evenly distributed on

Fig. 13. The Jain’s fairness index of link throughput.

Fig. 14. Forwarding process visualization for various schemes.

multiple links. The specific cases of the forwarding process
are visualized in § V-F.

F. Traffic Distribution Effect and Throughput Evaluation for
Forwarding-Computing Integrated Dataplane (RQ4)

In addition, we also evaluate the load-balancing effect of
the proposed data plane compared with flow-based, packet-
based, and LetFlow [59] (a typical flowlet-based scheme).
To carry out the experiments, we use the “Topo2: Parallel-
4” in Figure 6, which involves a multipath routing consisting
of 4 switch nodes in series. All approaches use the ECMP
algorithm for fair comparison. In order to evaluate the load
balancing of multiple candidate nodes, we leverage Jain’s
fairness index [51] as the metric, which is a widely used
metric for quantifying the evenness of resource allocation,
such as bandwidth, among a population of users or sessions
in a network. Jain’s fairness index F is defined as follows:

F =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 x
2
i

(11)

where xi represents the volume (e.g., traffic bytes) allocated
to the i-th switch, and n is the total number of switches. As
shown in Figure 13, flow-level scheme performs the worst,
with a Jain’s fairness index of about 0.6, followed by LetFlow
given its fixed FTV setting for all flowlets. Our approach
FCPlane (with default dynamic FTV adaptation) is comparable
to the packet-level one, which is expected.

Moreover, we select 100 consecutive sessions from Fig-
ure 13 to plot the traffic distribution process. The results are
shown in Figure 14. Different colors correspond to different
session indexes. It is clear that the flow-level approach presents
the most uneven workloads on four links in subfigure (d).
This can be attributed to there being some elephant flows that
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Fig. 15. Aggregated bandwidth and bandwidth distribution of flows.

include a large number of packets with heavy payloads, which
is also the reason why the flow-level scheme performs the
worst Jain’s index result in Figure 13. The forwarding volume
of the LetFlow on the four links is also somewhat uneven due
to its fixed FTV setting for all flowlets, as shown in Figure 14
(b). Figures 14 (a) and (c) display that FCPlane achieves
comparable results to the packet-level scheme, and their traffic
distributions are relatively uniform. Overall, FCPlane could
realize uniform load balancing by leveraging dynamic flowlet
adaptation and maintain excellent in-network traffic analysis
performance even against multipath routing.

We also replay the five-day traffic of IDS2017 to measure
the throughput of the testbed, as shown in Figure 15. The
proposed design realizes the real-time traffic detection and
can saturate the dataplane, i.e., 400 Gbps. The pipelined
nature of the switch hardware ensures the achievement of full
bandwidth, that is, line-speed model inference and routing. As
for the bandwidth distribution of flows in the right subfigure,
the overall results refer to FCPlane (ours) ≈ Packet-level >
LetFlow > Flow-level. Regarding hardware resources, our
forwarding-computing integrated dataplane across 9 stages,
and requires approximately 12.82% SRAM and 4.29% TCAM,
which is acceptable.

VI. DISCUSSION AND LIMITATIONS

A. Dataset Quality

Given that the Markov chain model construction in the
computing module of FCPlane is a data-driven process, it is
related to the dataset quality. We discuss here some potential
limitations when faced with low-quality datasets. Constructing
a network intrusion traffic dataset that reflects the real world
is not an easy task. Although IDS2017/2018 datasets are
widely used to evaluate the effectiveness of network intrusion
detection, previous work has revealed some of its flaws [60]–
[62]. We analyze the impact of these issues on FCPlane.
(i) Flow construction. In IDS2017/2018 datasets, the CSV
files are constructed and generated by the CICFlowMeter
tool [63]. Previous work has shown that there are errors in
the flow construction process of the CICFlowMeter tool, such
as incorrect parsing of FIN and RST packets [60], [62]. In our
experiments, we do not use the CSV files of the dataset, nor do
we use the CICFlowMeter tool. Instead, we use the SplitCap
tool [64] to perform the 5-tuple splitting on the original PCAP
traffic. (ii) Feature extraction. Previous work also showed that
the features extracted in dataset CSV files have the problem
of shortcut learning, e.g., flow ID, source IP, source port, and
timestamp, these attributes could lead to the IDS learning

spurious correlations [65]. Consistent with their suggestion,
the feature extraction in FCPlane mainly considers the packet
length and TCP flag fields, without using the time-specific
or host-specific information. (iii) Labeling issues. The dataset
labels of IDS2017/2018 mainly reference the attacker/victim
IP and the time window information of the attack execution.
This indeed lacks the verification of the flow content and
attack effect. Nevertheless, our detection method does not
make any assumptions about IP addresses or time windows,
and FCPlane can be combined with previous work on dataset
label correction [62] (e.g., using corrected/reassigned labels
for training and testing).

B. Topology Scenarios

We also discuss the impact of different topology sce-
narios on the performance of FCPlane. On the one hand,
we explain that if the dataset is collected at the sender
side or receiver side, the topology of the selected dataset
collection environment will hardly affect the FCPlane, even
if the topology of the test environment is different from
the dataset collection topology (there may be a little impact
from network-induced phenomena, which will be introduced
subsequently). For example, the dataset collection topology in
IDS2017/2018 does not highlight multipath routing issues. It
captures network traffic on each machine, meaning that each
machine can observe the complete relevant session (refers to
the multipath routing phenomenon that does not affect the
observation of the end side, while it does not refer to there
being no packet loss). Therefore, the distance between the
network topology described in the chosen datasets and the
proposed test topology scenarios does not impact the effect of
FCPlane. On the other hand, different topologies will affect
the probability of network-induced phenomena, such as packet
loss, retransmission, and out-of-order in PCAP traffic captured
at the receiver side [66]. These problem packets may further
lead to model misclassification. To cope with this problem,
FCPlane can leverage and combine existing robust model
construction strategies [6].

C. Adaptive Mechanism of FTV

In § V-E and § V-F, we demonstrate the effectiveness of
dynamic size adaptation in FCPlane, and we further discuss
the adaptation mechanism of FTV here. On the one hand, de-
termining an appropriate FTV value is non-trivial in practice.
One possible solution is to consider more information to guide
the adaptation of FVT, such as the traffic queue of ingress ports
and the response delay of the egress port link. The acquisition
and organization of this information can be combined with
network measurement solutions. For instance, we could send
probe packets and then recirculate them through each egress
port to obtain the corresponding queue length [67]. On the
other hand, as the number of flows increases, maintaining FTV
for all flows may lead to a significant increase in resource
overhead. A feasible solution is to deliver the information
(such as the sent packet) to the end-side host and mark this
information in the packet headers, as so saving dataplane table
resources. Moreover, the fading mechanism in FTV dynamic
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adaptation can be achieved by basic primitive operations
(based on P4) within one clock cycle [51]. Therefore, the
dynamic size adaptation in FCPlane would not become a main
bottleneck under real-world scenarios.

D. Other Challenges in Zero-Trust IDS

As stated in § II, according to the tenets of zero-trust
security and the derived zero-trust views and requirements
in network IDS, multipath routing is indeed the practical
challenge for deploying in-network analysis models to verify
all traffic. In addition to multipath routing, we expand here
to discuss other potential challenges for deploying zero-trust
IDS. (i) Distributed identity authentication and management.
Dynamic identity control requires rich data to support it [17].
Under the zero-trust architecture [27], the implementation of
the identity management system faces challenges in combining
data from different network nodes. For example, it requires
uniformly managing and analyzing identity data scattered
across various systems, and it is difficult to connect identity
data between application systems. (ii) Comprehensive analysis
of multi-source data. Zero-trust IDS needs to process data
streams from different sources, including while not limited to
network traffic, system logs, and user behavior data [27]. The
complexity of these data streams implies that comprehensive
analysis methods regarding multi-source data need to be
explored in the future. (iii) Continuous verification and main-
tenance. The zero-trust model relies on a large network with
strictly defined permissions. As a company grows, the turnover
of employees is an inevitable problem [18]. In addition, issues
such as network topology changes and link failures also need
to be considered.

VII. IMPLICATION FOR FUTURE WORKS

In this section, we discuss the challenge of zero-trust
in-network traffic analysis model against multipath routing
and summarize implications from three aspects for research
communities, as shown in Figure 16.

A. Origin: Deployment Location and Forwarding Strategy

First, stemming from the source of the multipath routing
phenomenon, selecting deployment nodes and configuring
different load-balancing strategies will directly affect the mul-
tipath routing ratio and the completeness of traffic. According
to the results of § V-C, selecting a location with fewer par-
allel candidate switch nodes for deployment will theoretically
obtain a lower multipath routing ratio and higher traffic com-
pleteness. However, it needs to be considered that zero-trust
security assumes that threats may originate from anywhere,
including within the network. This requires that the deployed
switch nodes should cover all possible attack sources. If
resources permit, deploying the traffic analysis model directly
at the gateway of the autonomous system will hopefully
capture complete traffic, this could mean a paradigm shift from
existing Cloud Security Service Providers [4] (CSSPs, e.g.,
Cloudflare, Arbor, Akamai). Moreover, previous work [23]
proposes that multipath provides greater stability than single-
path routing (this is considered from the perspective of the

Fig. 16. The implications from three aspects.

single-point failure and denial of service attacks), while our
results show that the multipath routing phenomenon instead
provides attackers with opportunities to bypass in-network de-
tection. Regarding the load-balancing algorithm, prior art [23]
mentions that per-packet hashing is more uniform than flow-
based hashing (thus improving overall link bandwidth), while
per-packet hashing indeed exacerbates the multipath routing
phenomenon, so users need to consider practical requirements.

B. Progress-in-Model: Robust Design and Validation

Another important consideration is the model design itself,
which is the decision-maker for in-network traffic analysis.
Admittedly, we cannot predict in advance which parts of the
traffic will be missed due to multipath routing. This is like an
unknown degree of packet loss that may occur in the network
at any time, perhaps considering packet loss during model
training is an option [6]. Nevertheless, this does not always
work because the missed packet ratio can be high (depending
on the number of candidate nodes in multipath routing).
According to the experimental results of flow-based baselines,
the statistical features are relatively more robust, which can
be explained by the fact that statistical methods can di-
lute/mitigate the impact of partial packet loss on characterized
outcomes. Likewise, we can also consider validation schemes
such as grouping flows based on attack source and performing
inter-flow cross-validation (i.e., mitigating the impact of partial
flow errors with attack source-level statistics). In this way, we
can have more examples to judge whether there is an attack
behavior (such as denial of service attacks). However, this may
cause the problem of slow reaction for disconnection (since
enough examples are needed to verify), so exist a trade-off
between detection accuracy and response speed.

C. Post-Processing: Cooperation of Multiple Switches

Finally, maybe one of the most promising and complex solu-
tions is cooperation between multiple switches. Essentially, in-
network traffic analysis models are affected by multipath rout-
ing because only localized/partial traffic data can be captured.
Therefore, if multiple switches can cooperate with each other,
the impact of multipath on the model will be fundamentally
solved, while this is non-trivial. We discuss some possible
solutions. For one thing, traffic data across multiple switches
can be shared, which improves traffic completeness and sup-
ports accurate predictions. For another, inference results output
by different switch nodes can be shared, this is a similar
purpose to the cross-validation. Nonetheless, whether sharing
data or decision results, additional bandwidth is required for
transmission, and this cost and expense need to be considered.
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VIII. CONCLUSION

In this paper, we introduce the practical challenge and
deployment observations about zero-trust in-network traffic
analysis during the cooperation of the ISP. Then, we explore
the probabilities of multipath routing and reveal its impact
on in-network ML-based traffic analysis models. Through
evaluation for 7 SOTA baselines with two public datasets,
the results show that multipath routing is common and the
impact on 5 flow-based models cannot be ignored. In addition,
2 packet-based methods present the problem of inconsistent
results within the session. To this end, we propose a new
forwarding and computing integrated dataplane and design
two tightly coupled modules. With carefully designed flowlet
extraction, routing strategies, and the tailor-made flowlet-
level Markov chain model, we realize efficient load balancing
while providing reliable traffic analysis results, even against
multipath routing. Finally, we summarize implications and
future directions in terms of problem origin, model design,
and post-processing. Our research could advance the practice
of zero-trust network IDS that robustly verify all traffic.
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