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Abstract
Encrypted traffic classification occupies a significant role in cyber-
security and network management. The existing encrypted traffic
classification technology mostly relies on intra-flow semantics for
extracting features. However, considering that some attack behav-
iors inherently have similar patterns to legitimate behaviors, and
powerful adversaries could simulate benign users to conceal their at-
tack intentions, intra-flow features may be similar between different
categories. In this paper, we propose TrafficScope, a time-wavelet
fusion network based on Transformer to enhance the performance
of encrypted traffic classification. Specifically, in addition to using
intra-flow semantics, TrafficScope also extracts contextual informa-
tion to construct more comprehensive representations. Moreover,
to cope with the non-stationary and dynamic contextual traffic, we
employ wavelet transform to extract invariant features. For feature
fusion, the cross-attention mechanism is adopted to inline combine
temporal and wavelet-domain features. We extensively evaluate
TrafficScope compared with 7 state-of-the-art baselines based on
four groups of real-world traffic datasets, the results show that
TrafficScope outperforms existing methods. We conduct a series of
experiments in terms of similar intra-flow feature evaluation, data
pollution, flow manipulations, and dynamic context to demonstrate
the robustness and stability of the proposed method. Furthermore,
we produce additional experiments to present the potential of Traf-
ficScope in cross-dataset scenarios.
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1 Introduction
Network traffic classification, which aims at identifying network
traffic categories such as intrusion detection, applications/web ser-
vices identification, malware detection, and so on, has emerged as
a critical task for cyberspace security and management [1, 2].

With the widespread use of encryption protocols (e.g., Secure
Socket Layer/Transport Layer Security (SSL/TLS) [3, 4]), tradi-
tional deep packet inspection (DPI) such as signature-based and
payload-based solutions have encountered some limitations. There-
fore, adopting machine learning (ML) techniques for modeling
encrypted traffic has attracted widespread attention across both
academia and industry [5].

Existing ML-based traffic analysis methods can be roughly di-
vided into two categories from the perspective of feature extraction.
(i) Packet-based methods [6–8] directly extract relevant fields from
each single raw packet, such as total length, TCP flags, time to live
(TTL), etc. The extracted field information will be parsed and fed
into theML classifier for subsequentmodel inference. (ii) Flow-based
methods analyze traffic by sessions, which are divided according
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Figure 1: The illustration of different feature extractions.

to five-tuple indexes, i.e., {Source IP, Source Port, Destination IP, Des-
tination Port, Protocol}. Such method can learn intra-flow patterns,
e.g., calculating statistical features [9], extracting sequence informa-
tion [10–12], and generating histogram distribution [13]. As shown
in Figure 1, compared to flow-based methods, packet-based schemes
mainly focus on detailed packet information, while failing to track
flow-level state information, which leads to limited effectiveness in
traffic detection [12, 14].

Although flow-based methods demonstrate some advantages,
intra-flow feature representation still has certain limitations. On
the one hand, some attack behaviors may natively have similar
patterns to legitimate user operations. As the DDoS filtering service
provider [15] reports the Empty Connection Flood attack is no
different from that of a legitimate user from the intra-flow analysis
perspective. Also, a POP3 mail server might get queried in the same
interval as a bot communication with its C&C server, and their
traffic sizes might accidentally match [16]. On the other hand, some
malicious adversaries often perform several behaviors that simulate
benign users to cover up their attack intentions. For instance, benign
and malware applications may generate similar traffic when they
use shared third-party libraries and Content Delivery Network
(CDN) services [17]. These examples indicate that it is difficult to
accurately identify traffic based solely on a single flow (session).
More details can be found in § 2.1. This motivates us to advance
context-aware traffic analysis, as shown in Figure 1 (c), which not
only considers intra-flow semantics but also observes inter-flow
information (neither packet-based nor flow-based scheme has this
context-aware capability).

In this paper, we propose a time-wavelet fusion network named
TrafficScope to enhance encrypted traffic classification by extracting
features in terms of intra-flow and contextual information from the
network traffic, respectively. For intra-flow features, TrafficScope
focuses on the raw packet bytes of the flow. For contextual features,
TrafficScope will aggregate the feature sequences of contextual
traffic at different time granularities. These aggregated sequences
will be conducted wavelet transform to cope with non-stationary
and dynamic contexts (more explanation in § 2.2). To this end,
TrafficScope is designed with three tightly coupled modules to gen-
erate traffic representations. Specifically, the extracted intra-flow
features and the contextual features are separately input into the
① Temporal Flow Representation module and ② Contextual Traf-
fic Representation module. These modules adopt the self-attention
mechanism of Transformer [18] encoder blocks for modeling and
mining temporal semantics and contextual information from the
traffic. In the ③ Feature Fusion module, the temporal intra-flow rep-
resentations are integrated with contextual representations with
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Figure 2: The illustration of similar intra-flow features.

the cross-attention mechanism [19] to obtain an overall representa-
tion vector. Finally, the obtained fused representations are fed into
the tailored classification layer to identify traffic categories.

Contributions. Our contributions can be summarized as:
• Considering that solely intra-flow features are insufficient
to accurately characterize traffic, we propose enhancing the
encrypted traffic representation by combining temporal intra-
flow and contextual information, which offers a new perspec-
tive for analyzing encrypted traffic.

• We present leverage wavelet transform to profile contexts thus
adapting to non-stationary and dynamic traffic characteristics.
Meanwhile, we design a time-wavelet fusion network named
TrafficScope to model intra-flow semantics and contextual
information via three tightly coupled Transformer modules.

• We conduct extensive experiments on four real-world en-
crypted traffic datasets and results show that TrafficScope
outperforms state-of-the-art methods on multiple metrics. In
terms of similar intra-flow feature evaluation, data pollution,
flow manipulations, and dynamic context, the results demon-
strate the robustness and stability of TrafficScope. Furthermore,
we produce additional experiments to present the potential of
TrafficScope in cross-dataset scenarios.

2 Motivation
We outline here the motivations for leveraging the wavelet trans-
form to develop inter-flow features, and introduce the advantages
of Transformer modeling in § A.1.

2.1 Why Intra-Flow Features are Insufficient?
The existing traffic classification methods mainly extract the intra-
flow features as the traffic representation. However, existing re-
search [16] and vendor [15] reports indicate that attack and benign
traffic can be very similar, indicating the intra-flow features may
not be sufficient for accurate traffic characterization. (i) On the one
hand, some attack behaviors may inherently have similar patterns
to legitimate user operations. For instance, as the case 1 in Figure 2
shows, a POP3 mail server might get queried in the same interval
as a malicious bot communication with its C&C server, and their
traffic sizes might accidentally match [16]. Besides, according to the
DDoS filtering service provider [15, 20, 21], the Empty Connection
Flood attack is indistinguishable from that of the single three-way
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handshake behavior of a legitimate user. (ii) On the other hand,
some malware deliberately simulates behaviors of benign users to
cover up its attack intentions [22–25]. For example, as shown in
case 2 of Figure 2, malware and benign applications may generate
similar or even the same traffic when they use shared third-party
libraries and Content Delivery Network (CDN) services [17], e.g.,
visit common web services such as GitHub, Twitter, Google Storage,
etc. Therefore, it is of great importance to enhance richer traffic
representation beyond intra-flow features.

2.2 Why Adapt Wavelet to Construct Context?
Given the limitations of relying on intra-flow features, we aim to
optimize the flow analysis with the conjunction of contextual infor-
mation. However, it is non-trivial to extract representative features
from contextual flows as network traffic is non-stationary [26]. In
the fields of image and signal processing, the wavelet transform
has demonstrated a strong capability in retaining translation- and
scale-invariant properties [27, 28]. Moreover, it has been outlined
in practical signal processing theory [29] that wavelet transform
demonstrates theoretical superiority over Fourier transform in fea-
ture representation of non-stationary signals such as network traffic.
Correspondingly, we also observe the advantages of wavelet trans-
form in characterizing network traffic in practice. In Figure 3, the
patterns of contextual flows in the time domain may vary signif-
icantly due to different runtime behaviors of applications, which
involves time-shifting in subfigure (a) and diverse scales (dura-
tions) in subfigure (b). After applying wavelet transform (from
left to right), we observe that the traffic contexts within the same
category exhibit similar patterns in the wavelet domain, despite
exhibiting variations in the time domain. Thus, we could obtain
similar representations for traffic context within the same category
(e.g., intra-DoS or intra-benign) and different representations for
contexts of different categories (e.g., between benign and DoS).

3 Problem Formulation
In this section, we introduce the adversary model and assumptions,
as well as provide specific problem definitions in this work.

3.1 Threat Model and Assumptions
Adversary Model. We consider strong adversaries will simulate
benign user behaviors to conceal their attack intentions [22, 23, 25,
30]. This means that intra-flow features have relatively large simi-
larities between different traffic categories. The powerful attacker
may also deliberately mix mislabeled samples for data pollution. As
time and environment change, traffic characteristics are not set in
stone. Therefore, the problem of concept drift is within the scope
of consideration. In addition, we mainly focus on encrypted traffic
analysis in this paper, since the transmission content is increasingly
being encrypted in existing networks, such as SSL/TLS and SSH.
Concretely, we tend to characterize traffic behavior by portraying
packet field distribution rather than analyzing transmission content,
e.g., TCP Payload.
Assumptions. We do not make assumptions about the traffic
distribution, which means that the context information is dynamic
and non-stationary, as is the case in the real world. We also do
not make assumptions about the time between flows, e.g., multiple
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Figure 3: Wavelet transform for non-stationary context.

attacks may be launched at the same time or may appear alternately.
Furthermore, we consider the network-induced phenomena, such
as packet loss, retransmission, out-of-order, etc. Meanwhile, we do
not assume additional collaborations from other Internet entities,
such as IP blacklists provided by security vendors.

3.2 Problem Definition
Traffic classification refers to differentiating network traffic into
different categories based on their characteristics. Specifically, our
work concentrates on flow-level traffic classification. A flow in this
paper is defined as a bi-directional sequence of packets that share
the same 5-tuple (i.e., same source/destination IP and port, same
protocol). Assume that there are 𝑁 samples and 𝑄 categories of
traffic in total. Let the raw bytes of the 𝑖-th sample be x(i) . The
traffic type of x(i) is denoted as𝑦 (𝑖 ) , where 0 ≤ 𝑦 (𝑖 ) < 𝑄 . We aim to
build a context-aware traffic classification model Ω(x(i) , (ctx) (i) )
to predict a label 𝑦 (𝑖 ) that is exactly the real label 𝑦 (𝑖 ) , where
(ctx) (i) represents the contextual flows of the 𝑖-th sample.

4 Design of TrafficScope
In this section, we elaborate on the design of TrafficScope. We first
present the design overview, followed by a detailed description of
each module in TrafficScope.

4.1 Overview
In Figure 4, the overall pipeline refers to data pre-processing, time-
wavelet fusion network, and classification layer (from left to right).
As stated in § 3.2, the classification task of this paper is carried out
on quintuple streams. Themain difference from existingwork is that
our input not only includes the flow to be classified (called the flow
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of interest, FoI), but also involves its contextual information. The
key structure of TrafficScope is the time-wavelet fusion network
(the middle part of Figure 4) for traffic representation, which aims
at improving encrypted traffic classification. We will elaborate on
the three modules (i.e., temporal flow representation, contextual
traffic representation, and feature fusion) in § 4.2∼§ 4.4. Finally, we
introduce the classification layer in § 4.5.

4.2 Temporal Flow Representation
Temporal flow representations are generated from raw bytes of
packets in FoI. This module is designed as a general approach to
extract temporal flow representation. It does not depend on the spe-
cific characteristic of the traffic, i.e., the overall process of features
input can be applied to both encrypted traffic and non-encrypted
traffic. Besides, it should be protocol-agnostic as it is difficult to
recognize and parse fields of all variant protocols [7]. Therefore,
instead of performing complex packet parsing, we directly utilize
raw traffic bytes as features. Specifically, we analyze the FoI, which
consists of bi-directional packets with the same 5-tuple as we de-
fined in § 3.2. We extract the first𝑀 packets from the FoI, taking the
first 𝐵 bytes from each packet in the flow, to form a feature matrix
Ft in the time domain, where Ft ∈ R𝑀×𝐵 and the value range of
each element in the matrix is [0, 255].

We apply the sequence model Transformer [18] to characterize
and capture the temporal intra-flow pattern of FoI. The packets in
FoI are treated as time-series data, sorted in ascending order by
timestamp, and then fed into the Transformer model. As transform-
ers are insensitive to the order of input sequence elements, we need
to perform sequence positional encoding to preserve the temporal
relationships in the input sequence. We employ sequence positional
encoding (SPE) of commonly used sine and cosine functions with
different frequencies [18]:

𝑆𝑃𝐸 (𝑖, 𝑗 ) =


sin

(
𝑖

100002𝑗/𝑑𝑡

)
, if 𝑗 is even

cos
(

𝑖

100002( 𝑗−1)/𝑑𝑡

)
, if 𝑗 is odd

(1)

where 𝑆𝑃𝐸 (𝑖, 𝑗 ) denotes the positional encoding value for the ele-
ment (𝑖, 𝑗) in featurematrix,𝑑𝑡 is the dimensionality of the temporal
feature after embedding.

In summary, for the temporal featurematrix Ft= [m1,m2, · · · ,mM],
where mi ∈ R𝐵 , we denote Et as the temporal flow representation
generated by the sequence model Transformer:

Et=𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟

( [
WtmT

1 ,· · ·,WtmT
M

]
+𝑆𝑃𝐸𝑇(𝑖, 𝑗 ) ∈Ft

)
(2)

whereWt ∈ R𝑑𝑡×𝐵 is a learnable parameter.
If the number of packets in the target flow is less than𝑀 or the

length of each packet is less than 𝐵, we pad the missing elements
with a value of -1, which can be distinguished from the value range
of normal elements. It is worth noting that the Transformer does not
need a uniform sequence length. The padding here is only beneficial
for data storage and batch calculation. In order to eliminate the
padded values during model computation, we provide the model
with a 0-1 mask matrix Fmask, where 1 represents the positions
that have been padded. With mask matrix, the model can identify
padded positions and solely calculate original values in sequence.

With the above mechanisms, we capture the temporal patterns
of FoI, generate effective temporal flow representation, and simplify
the complex traffic input (encrypted or plain text, variant protocols,
and packet lengths), which is used for the subsequent feature fusion.

4.3 Contextual Traffic Representation
In this module, contextual representations are generated from the
contextual packet length sequence [11, 23] of FoI. To extract in-
variant and representative features (as stated in § 2.2) from the
contextual packet length sequence, we employ the wavelet trans-
form. The wavelet transform is a well-known time-wavelet analysis
tool that has been widely used to analyze non-stationary signals
and provide variant resolutions to a signal at different scales. In
this paper, we utilize the wavelet transform to extract invariant
and representative contextual features from the flow of interest.
Mathematically, the wavelet transform used is defined as follows

W𝑥 (𝑎, 𝑏) =
1
√
𝑎

𝑇𝑒𝑛𝑑∑︁
𝑡=𝑇𝑠𝑡𝑎𝑟𝑡

𝑥 (𝑡)Ψ
(
𝑡 − 𝑏

𝑎

)
(3)
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where 𝑥 (𝑡) is the signal to be analyzed, Ψ
(
𝑡−𝑏
𝑎

)
is the mother

wavelet function Ψ(𝑡) after scaled by a factor of 𝑎 and translated by
a factor of𝑏.𝑇𝑠𝑡𝑎𝑟𝑡 and𝑇𝑒𝑛𝑑 specify the start and the end time of the
signal to be processed. The wavelet coefficientsW𝑥 (𝑎, 𝑏) capture
the energy of the traffic signal at different scales and positions. The
wavelet spectrogram can be given as

𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑎, 𝑏) = 𝑁𝑜𝑟𝑚(log2 | |Wx (a, b) | |) (4)
where | |·| | returns the amplitude, and 𝑁𝑜𝑟𝑚 is min-max normal-
ization function. The spectrogram efficiently represents how the
instantaneous frequency changes over time. It not only provides
information in the wavelet domain but also reveals the temporal
variations of the signal. In this paper, we use logarithmic and nor-
malized spectrograms as contextual features.

About contextual information, we aggregate it over a unit of time
(e.g., 𝑠 ,𝑚𝑠 , and𝑚𝑖𝑛). Considering the start time𝑇𝑠𝑡𝑎𝑟𝑡 , end time𝑇𝑒𝑛𝑑 ,
and the number of aggregation points𝐺 , we utilize hierarchical time
scales for aggregation to accommodate different traffic categories.
Let 𝜏 be the aggregation time scale, i.e., aggregation occurs every 𝜏
seconds. If the target flow starts at time 𝑡𝐹𝑜𝐼 , then the start time of
the contextual length sequence is 𝑇𝑠𝑡𝑎𝑟𝑡 = 𝑡𝐹𝑜𝐼 −𝐺/2 × 𝜏 , and the
end time is𝑇𝑒𝑛𝑑 = 𝑡𝐹𝑜𝐼 +𝐺/2×𝜏 . That is, (ctx) in § 3.2 corresponds
to the packets from 𝑇𝑠𝑡𝑎𝑟𝑡 to 𝑇𝑒𝑛𝑑 . After the aggregation of the
packet length sequence, we apply wavelet transform to extract
contextual features. We use the wavelet spectrum defined in Eq. (3)
as the final wavelet domain feature matrix Fw ∈ R𝐶𝑤𝑡×𝐺 , where
𝐶𝑤𝑡 is the dimension of wavelet coefficients.

We apply another Transformer to characterize and capture the
contextual traffic pattern of FoI. The wavelet spectrum is treated as
a time series, sorted in ascending order by transform coefficients,
and then fed into the Transformer model. To preserve the temporal
relationships in the wavelet spectrum and the hierarchy of spec-
trums at different time scales, we need to perform both sequence
positional encoding and hierarchical time scale positional encoding.
The sequence positional encoding is the same as defined in Eq. (1).
To encode information of different time scales into the sequence, we
use a learnable embedding weightWTSPE : 𝑁𝜏 → 𝑑𝑤𝑡 , where 𝑁𝜏

represents the number of time scales used,𝑑𝑤𝑡 is the dimensionality
of the contextual feature after embedding.

In summary, for the wavelet spectrum F𝜏wt = [g1, g2, · · · , gG],
where gi ∈ R𝐶𝑤𝑡 , we denote E𝜏wt as the contextual traffic represen-
tation at time scale 𝜏 generated by the sequence model Transformer:

E𝜏wt =𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟

( [
WwtgT1 ,WwtgT2 , · · · ,WwtgTG

]
+ 𝑆𝑃𝐸𝑇(𝑖, 𝑗 ) ∈Fwt

+WTSPE𝑖𝑑𝑥 (𝜏)
) (5)

where Wwt ∈ R𝑑𝑤𝑡×𝐶𝑤𝑡 is a learnable parameter, 𝑖𝑑𝑥 (𝜏) gives the
index of time scales (i.e., from 1 to 𝑁𝜏 ).

With the above mechanisms, we capture the contextual patterns
of FoI, and generate effective contextual traffic representation with
information on hierarchical time scales, which are used to combine
with temporal features.

4.4 Time-Wavelet Feature Fusion
In this module, traffic representations are enriched by the inte-
gration of temporal flow representations with contextual traffic
information. In the encrypted traffic classification task, intra-flow

Attention score

+

Context

Attention score calculation Weighted sum calculation Feature fusion

Intra-flowTarget
sequence 

Source
sequence

Position

Figure 5: Feature fusion with cross-attention mechanism.

features could be similar between different categories. According to
the motivation described in § 2, we tend to fuse temporal represen-
tations of the flow of interest (FoI) with contextual traffic represen-
tations. As depicted in Figure 5, we adopt a Transformer encoder
with the cross-attention mechanism [19] to extract and integrate
the relationships between temporal and contextual representations,
and finally generate the fusion features. For each temporal represen-
tation vector, the cross-attention mechanism learns and calculates
the weight of the contextual representation vector. The weighted
sum of the contextual representation vector and the temporal rep-
resentation vector is the output of the Feature Fusion module. For
formalization, let qi, kj, and vj be the query, key, and value vectors
for the 𝑖-th element in Et, 𝑗-th element in Ewt, respectively. The
fusion representations as Ef = [e1f , e

2
f , · · · , e

M
f ], and

eif =𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟
©«qi +

𝐺∑︁
𝑗=1

qi · kj∑𝐺
𝑗 ′=1 qi · kj′

· vj
ª®¬ (6)

where qi · kj denotes the dot product between qi and kj.
There are two main advantages to our time-wavelet fusion de-

sign. First, it provides a more comprehensive representation of
traffic data. By introducing contextual information to assist the
classification of FoI, such feature fusion design enables more dis-
tinguishable between different categories even if they have similar
intra-flow features, thus improving the model performance. Sec-
ond, the cross-attention mechanism enables the model to focus on
valuable features in the contextual information for the target flow
classification and cope with dynamic traffic.

4.5 Classification Layer
The task of the classification layer is to distinguish categories of FoI.
After the above operations, we have obtained fusion representa-
tions for FoI. To acquire classification results, we need to learn the
difference between representations of categories. So we input them
into the classifier which consists of a fully connected layer with
the softmax function. The output of the softmax function is the
probabilities of each category. During training, the cross-entropy
loss is employed to measure the difference between the predicted
class probabilities and the actual labels. The cross-entropy loss as:

𝐻 (y, prob) = − 1
𝑁

𝑁∑︁
𝑖=1

𝑄∑︁
𝑗=1

𝑦𝑖 𝑗 log(𝑝𝑟𝑜𝑏𝑖 𝑗 ) (7)

where 𝑁 is the number of samples, 𝑦𝑖 𝑗 is the actual probability
that sample 𝑖 belongs to class 𝑗 , and 𝑝𝑟𝑜𝑏𝑖 𝑗 is the predicted prob-
ability for sample 𝑖 belonging to class 𝑗 . In the inference phase,
the predicted category is determined as the one with the highest
probability from the softmax output:

𝑦𝑖 = arg
𝑄

max
𝑗=1

𝑝𝑟𝑜𝑏 𝑗 (8)

where 𝑦𝑖 is the predicted label of the input traffic data.
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Table 1: Performance comparison results (%) w.r.t. Accuracy (AC), Precision (PR), Recall (RE), and F1-Score (F1).

Datasets CIC-IDS2017/2018 CrossNet2021 ISCXVPN2016 CIC-InvesAndMal2019
Methods AC PR RE F1 AC PR RE F1 AC PR RE F1 AC PR RE F1
FlowPrint [31] 86.99 90.07 86.98 87.02 82.38 89.32 88.42 87.11 79.62 80.42 78.12 78.20 72.38 71.49 71.76 72.89
FS-Net [11] 72.05 75.02 72.38 71.31 84.36 82.23 83.84 82.22 76.47 78.19 78.48 77.37 81.37 82.74 81.89 82.38
Whisper [23] 79.34 82.45 82.39 82.43 71.24 71.34 72.68 71.39 80.34 79.76 79.54 79.66 62.45 63.72 61.23 63.56
ET-BERT [32] 90.28 90.89 91.89 91.02 91.31 92.38 92.83 92.43 91.29 89.13 85.19 85.98 88.56 89.97 89.45 89.65
FlowLens [13] 91.25 88.21 90.09 87.89 83.85 82.93 84.23 83.48 86.10 78.83 86.76 86.68 84.22 84.78 84.72 84.89
HyperVision [33] 93.28 87.26 88.53 86.26 86.28 84.78 87.92 87.47 71.82 73.39 72.25 71.97 85.82 83.80 84.23 84.29
nPrint [7] 95.68 91.23 91.94 90.40 88.72 89.81 88.98 89.19 85.34 85.83 84.88 84.20 87.42 87.29 88.92 88.23
TrafficScope 98.65 92.34 92.66 92.46 98.42 94.22 94.39 94.30 97.29 97.56 97.31 97.33 95.39 95.03 95.73 95.17

5 Experiments
In this section, we perform empirical evaluations to demonstrate the
effectiveness of the proposed TrafficScope framework. Specifically,
we aim to answer the following research questions:

• RQ1: How is the traffic classification effect of TrafficScope
compared to SOTA baselines? (§ 5.2)

• RQ2: How effective do temporal and wavelet features con-
tribute to traffic classification? How much will the perfor-
mance of TrafficScope change with different time granularity
aggregation and wavelet function selection? (§ 5.3)

• RQ3: How does TrafficScope perform when against similar
intra-flow features, data pollution, traffic manipulation, and
dynamic context? (§ 5.4)

• RQ4: How much is the overhead of TrafficScope? (§ 5.5)
• RQ5: How does TrafficScope perform with cross-dataset eval-
uation? (§ 5.6)

5.1 Experimental Setup
Datasets. To comprehensively evaluate the effectiveness of Traf-
ficScope, we adopt four groups of public datasets. These datasets
cover common traffic classification tasks and are summarized as fol-
lows. (i) Intrusion Detection. CIC-IDS2017 dataset and CIC-IDS2018
dataset [34] are included in this task. (ii) Desktop Application Iden-
tification. CrossNet2021 dataset [35] contains traffic data from
20 categories of desktop applications such as 360, Sougou, and
CSDN in two practical scenarios. (iii) VPN Traffic Classification.
ISCXVPN2016 dataset contains pure encrypted traffic from com-
mon applications, e.g., Facebook, Netflix, Skype, etc. (iv) Malware
Identification. CIC-InvesAndMal2019 [36] dataset collected traffic
of 426 malicious and 5065 benign applications on real smartphones.
We set 𝑡𝑟𝑎𝑖𝑛 : 𝑡𝑒𝑠𝑡 = 8 : 2. More details of datasets are in § B.1.
Baselines. We evaluate proposed TrafficScope framework with
7 state-of-the-art baselines of encrypted traffic classification, in-
cluding FlowPrint [31], FS-Net [11], Whisper [23], ET-BERT [32],
FlowLens [13], HyperVision [33], and nPrint [7]. They involve tra-
ditional machine learning, recurrent neural networks, pre-trained
transformer, etc., based on time-domain and frequency-domain
features. More details are in § B.2.
Evaluation Metrics. To give a fair comparison, we employ evalua-
tion metrics commonly used in traffic classification tasks, i.e., Over-
all Accuracy (AC), Precision (PR), Recall (RE), and Macro F1-Score
(F1) [37]. For four groups of datasets, all the results are reported
based on multiple classification tasks.
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Figure 6: Comparison results of ROC curves and DET curves.
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Figure 7: Visualizing time-wavelet fusion features.

Implementation Details. We extract the first 64 packets of the
target flow and the first 64 bytes of each packet. The dimension of
the wavelet coefficients is 128. We aggregate the contextual length
sequence at the millisecond level, second level, and minute level
respectively. In each level, we use 128 as the number of aggregation
points. The number of heads in the multi-head attentionmechanism
is set as 8. The number of Transformer encoder layers is set as 4. We
use the dropout layer [38] with the probability of 0.5 in TrafficScope.
The Adam [39] optimizer with a learning rate of 0.001 is used.
TrafficScope is implemented with PyTorch. For all the comparison
methods, we set parameters based on their official implementations.
All experiments are conducted on the Ubuntu 18.04.2 server with
Intel i7-12700K CPU, NVIDIA TITAN GPU, and 64GB memory.

5.2 Effectiveness Evaluation (RQ1)
Classification Performance on Various Datasets. Compared
with 7 state-of-the-art (SOTA) baselines, the multiple classification
results are summarized in Table 1. In terms of the four evaluation
metrics, our approach outperforms other baselines by a significant
margin. The most competitive baseline varies across datasets, e.g.,
nPrint presents better performance than the other six baselines
in the IDS dataset and ET-BERT dominates among baselines in
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Figure 9: Performance comparison results under similar intra-flow features on four datasets.

CrossNet2021. Among these baselines, HyperVision considers the
aggregation between multiple flows based on addresses. It is not
robust enough because attackers will deploy botnets and change IP
configuration [8, 40]. The other six baselines focus on intra-flow
information, resulting in some accuracy loss.
ROC Curves and DET Curves. To further analyze the classifi-
cation performance, we plot the ROC curves and the DET curves
of TrafficScope and baselines (including FS-Net, Whisper, and ET-
BERT that can adjust the decision threshold). From Figure 6, Traf-
ficScope is better than other baselines in both ROC curves and
DET curves. This shows the ability of TrafficScope to achieve high
precision and recall while maintaining low false positive rates.
Visualization for Time-Wavelet Fusion Features. In Figure 7,
we utilize t-SNE [41] to visualize time-wavelet fusion features for
IDS and VPN datasets. It is clear that traffic with the same category
will gather together to form clusters, which indicates the effective-
ness of combining intra-flow temporal semantics and contextual
wavelet information.

5.3 Ablation Study (RQ2)
In this section, we conduct the ablation study to explore the con-
tributions of temporal and wavelet features, as well as perform
experiments by using different aggregation time scales and various
wavelet functions.
Feature Ablation. To explore the contributions of each feature
module in TrafficScope, we eliminate the Temporal Flow Repre-
sentation module (i.e., TrafficScope/t) and the Contextual Traffic
Representation module (i.e., TrafficScope/c) respectively. As shown
in Figure 8 (a), we could summarize the following observation. (i)
The Temporal Flow Representation module can fully extract the
temporal pattern of the flow of interest (FoI). (ii) The integration
of contextual representations can more comprehensively profile
the traffic and strengthen the feature representation ability. (iii)

The performance of the complete model TrafficScope on the four
datasets is better than other ablation models.
Aggregation Time Scales. From Figure 8 (b), we can find that (i)
when using the three aggregation time scales together (i.e.,millisec-
ond, second, and minute), the model has achieved the best perfor-
mance on all datasets. (ii) In different datasets, the contributions of
each time scale are various. Therefore, TrafficScope hierarchically
aggregates with different time scales by default, which enhances
the model’s adaptability to traffic with various characteristics and
ensures the effectiveness of the model.
Wavelet Functions. In Figure 8 (c) with selecting different mother
wavelet functions, we can observe that cgau and morl often tend
to achieve great performance. Nonetheless, with different mother
wavelet function settings, the F1 score of TrafficScope does not
change significantly (e.g., <1%), which is still the best performance
compared with other methods in Table 1. Therefore, we conclude
that TrafficScope is robust to the choice of mother wavelet function
and consistently outperforms other compared methods.

5.4 Robustness and Stability (RQ3)
Similar Intra-Flow Features Evaluation. We evaluate here the
performance of TrafficScope and 7 comparedmethods, under similar
intra-flow features. Details of similarity calculation are in Appen-
dix B.3. The corresponding results are shown in Figure 9. Specifi-
cally, it is clear that as the similarity of intra-flow features increases,
TrafficScope always maintains relatively stable classification perfor-
mance. Therefore, our integration of temporal flow and contextual
traffic representation is proved to be effective when against similar
intra-flow features, echoing our original design intentions.
Data Pollution Evaluation. Furthermore, we consider data pollu-
tionwith an error label of probability 𝑝 in Figure 10.We observe that
as the probability of error labels increases, TrafficScope maintains
better performance than other baselines. This can be attributed to
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Figure 10: Performance comparison results under imprecise traffic labels on four datasets.

Table 2: Dynamic context evaluation with the IDS dataset.
Mixed 𝜅=0 𝜅=1 𝜅=2 𝜅=3 𝜅=4 𝜅=5

Same AC (%) 98.65 98.65 98.64 98.66 98.70 98.73
F1 (%) 92.46 92.46 92.46 92.47 92.50 92.84

Diff AC (%) 98.65 98.18 97.82 96.42 95.90 94.92
F1 (%) 92.46 92.16 91.61 91.11 90.28 89.30

(a) Precision results of packet retransmission (b) Recall results of packet retransmission

(c) Precision/recall of packet loss (d) Precision/recall of packet out-of-order

Figure 11: Evaluation under manipulations on target flow.

the contextual feature that provides additional support for model
classification. Therefore, TrafficScope is relatively robust against
data pollution since the time-wavelet feature fusion design.
Dynamic Context Evaluation. We evaluate TrafficScope under
dynamic context with the IDS dataset, by randomly selecting 𝜅

samples of contextual traffic in categories different from the FoI.
As a control group, we also select 𝜅 contextual traffic of the same
category as the FoI and mix them into the original contextual traffic.
The experimental results are summarized in Table 2. We find that if
mix the contextual traffic with the same category of FoI, the classifi-
cation performance of TrafficScope could be slightly improved (e.g.,
98.73% accuracy in 𝜅 = 5). On the contrary, the detection results of
TrafficScope decrease (∼3.7% accuracy when 𝜅 = 5) when mixing

MethodsMethods
Figure 12: The time overhead.

multiple different types of contextual traffic. Even if mix different
types of traffic into context, the performance of TrafficScope will
not be greatly affected. This echoes back our intention of using
wavelets to deal with non-stationary and dynamic traffic in § 2.2.
Traffic Manipulation. To further assess the robustness of Traffic-
Scope, we investigate the effects of various manipulations on the
target flow. We mainly consider three types of real-world manipu-
lations including packet retransmission, loss, and out-of-order of
the target flows [10, 42]. Figure 11 displays the results based on the
CIC-IDS2017/2018 datasets. (i) By varying the retransmission times
𝜂 and probability 𝛼 in subfigures (a)-(b), TrafficScope performs an
average drop of 2.29% and 2.72% in precision and recall respectively,
which still outperforms most baselines. (ii) By varying the packet
loss probability 𝛽 increases from 0% to 50% in subfigures (c), the
average recall of TrafficScope drops from 92.66% to 75.29%. (iii)
By varying the out-of-orde probability 𝛾 , subfigure (d) exhibits a
relatively small impact than the packet loss scenario. Overall, Traf-
ficScope achieves relatively robust performance even if occurring
packet retransmission, loss, and out-of-order, given TrafficScope
combines contextual information with the temporal feature for
traffic classification.

5.5 Overhead Evaluation (RQ4)
We measure the time overhead in Figure 12. All models run on the
Ubuntu 18.04.2 server with Intel i7-12700K CPU, NVIDIA TITAN
GPU, and 64GB memory. Overall, FlowLens, Whisper, FlowPrint,
HyperVision, and nPrint are on one level (<2𝑚𝑠) since there are ma-
chine learning based methods. Particularly, the original papers of
Whisper and HyperVision use DPDK [43] for dataplane deployment,
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Table 3: Running time of TrafficScope.
Steps Time (𝑠)

Temporal Feature Extraction 2.97 × 10−3
Contextual Feature Extraction 5.10 × 10−4
Temporal Transformer Forwarding 3.61 × 10−5
Contextual Transformer Forwarding 7.73 × 10−5
Feature Fusion 2.39 × 10−5
Flow Classification 1.39 × 10−6

Total 3.48 × 10−3

Table 4: Cross-dataset evaluation.
Cross-dataset C17→C18 nonVPN→VPN ScenA→ScenB

Metric AC (%) F1 (%) AC (%) F1 (%) AC (%) F1 (%)
FlowPrint 72.85 69.63 40.22 33.80 48.62 41.39
Whisper 45.21 36.88 65.03 61.82 39.84 32.68
ET-BERT 38.82 29.16 40.52 31.64 42.29 34.47

HyperVision 41.55 33.29 55.73 49.26 62.81 57.44
nPrint 32.44 25.79 38.61 29.70 44.19 31.86

TrafficScope 91.20 88.28 90.13 89.32 94.35 89.21
TrafficScope (Context) 96.91 91.07 95.73 93.69 95.02 91.61

TrafficScope (FoI) 98.31 92.29 97.16 96.85 97.96 93.89

and the time overhead here is measured based on Python running.
The deep learning model does have more time overhead (generally
than 3𝑚𝑠). The overhead of TrafficScope is close to FS-Net, ∼3𝑚𝑠 .
Also, the most time-consuming model is ET-BERT because it con-
tains massive parameters. In addition, we provide the overhead
breakdown for TrafficScope. As Table 3, TrafficScope takes an aver-
age of 3.48× 10−3𝑠 to recognize the category of the flow of interest.
The main time cost is from the temporal feature extraction, which
takes up 2.97 × 10−3𝑠 .

5.6 Cross-Dataset Experiments (RQ5)
For three cross-dataset scenarios (based on IDS, VPN, and CrossNet)
in Table 4, and it is clear that TrafficScope outperforms the baseline
by >15% accuracy and F1 score. Meanwhile, we conduct ablation
experiments on the drift of content and FoI. The results show that
when only FoI drifts or context drifts, the performance of Traffic-
Scope is only slightly affected. In real scenarios, the occurrence of
concept drift is gradual, the background traffic and FoI may not
change suddenly simultaneously. Overall, TrafficScope performs
limited accuracy loss against cross-dataset tests.

6 Discussion
Practicality. In addition to typical intrusion detections, Traffic-
Scope can be extended to more application scenarios. Considering
the advanced persistent threat (APT) attacks usually include mul-
tiple stages [44, 45], e.g., MITRE ATT&CK [46] kill chain shows
that attackers often use a series of related behaviors dispersed in
multiple sessions to coordinate to achieve attack goals.
Extensibility. On the one hand, applying TrafficScope for un-
known detection is feasible. We could use the fusion features (the
hidden layer state output by feature fusion Transformer in Traffic-
Scope) and combine anomaly detection models [47, 48] to develop
unknown attack detection. On the other hand, TrafficScope could
provide a new perspective to cope with low-quality datasets [49],
by considering inter-stream contextual semantics.
Limitations and Future Work. (i) The basic classification unit
of TrafficScope is a flow. This implies that TrafficScope may be

unsuitable for scenarios where network flows are inseparable, such
as Tor. (ii) In the future, we can consider combining the latest data-
plane primitives (e.g., Intel DPDK [8, 23] and P4 in programmable
switches [50, 51]) with TrafficScope to implement real-time traffic
analysis. (iii) In the real world, traffic categories are continuously
increasing [52], class-incremental learning is a promising direction.

7 Related Work
Encrypted Traffic Classification. Encrypted traffic classifica-
tion [53, 54] is an essential task in network security and manage-
ment [55, 56]. There are some works that leverage the attention
mechanism and Transformer for traffic classification tasks [57–59].
However, PEAN [57] and YaTC [58] focus on intra-flow features
(involving packet-level and flow-level), and MT-FlowFormer [59]
only considers randomly introducing an additional flow for feature
enhancement. These works rarely use the contextual information
of flows, so they could not maintain stable performance when intra-
flow features are similar.
App Fingerprinting. App fingerprinting aims to identify specific
applications or services by analyzing the characteristics of their
generated network traffic [31, 60, 61]. Compared with these app fin-
gerprinting approaches, TrafficScope achieves a more general classi-
fication of encrypted traffic. Our model does not depend on specific
characteristics of application traffic and is protocol-agnostic.
ML-Based NIDS. Network Intrusion Detection Systems (NIDSes)
are critical components in safeguarding network infrastructures
against various malicious activities [30, 62]. Numerous studies have
proposed ML-based NIDS [9, 13, 23, 33]. Our work covers malicious
traffic detection and can be used for NIDS in practice.

8 Conclusions
In this work, we propose TrafficScope, a time-wavelet fusion net-
work based on Transformer to enhance the performance of en-
crypted traffic classification against similar intra-flow features. Traf-
ficScope first captures the temporal relationship of packet bytes in
flow and applies wavelet transform for generating invariant and rep-
resentative contextual features, to realize a powerful representation
ability. Extensive experiments indicate that TrafficScope’s perfor-
mance and practicality outperform state-of-the-art algorithms by
significant margins. We believe TrafficScope provides new perspec-
tives for encrypted traffic classification.
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A Additional Details of Transformer
A.1 Why Use the Transformer Modeling?
Transformer [18] is a neural network architecture that has shown
remarkable performance in various tasks such as natural language
processing [63–65], speech processing [66, 67], and computer vi-
sion [68, 69]. This motivates us to leverage the power of the Trans-
former for network traffic classification. The basic building block of
Transformer is the self-attention mechanism, which computes the
importance of different parts of a sequence based on their relevance
to other parts of the same sequence. The self-attention mechanism
enables the network to focus on different parts of the input se-
quence based on their relevance to the given task. As we visualized
the attention weights of samples from multiple categories in Fig-
ure 13, the attention positions of different samples belonging to
the same categories exhibit similar distributions, while the samples
of different categories hold various distributions. This fact reflects
that the attention mechanism can help distinguish categories by fo-
cusing on salient positions. Besides, the Transformer also includes
other components such as multi-head attention and position-wise
feed-forward networks, and the details are illustrated in § A. We
design TrafficScope with three Transformer encoders. Among them,
two encoders are fed with the original raw bytes of network traffic
and wavelet spectrogram respectively, to perform linear projec-
tion and self-attention mechanism. The third Transformer encoder
combines information from both the time domain and wavelet do-
main via the cross-attention mechanism [19]. Overall, leveraging
the Transformer to model time-wavelet features allows us to ex-
tract informative representations for intra-flow and traffic context.
Meanwhile, the cross-attention mechanism can construct inline
fusion for features, which can be helpful to focus on significant
differences in various categories.
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Figure 13: Visualization of the attention weight for samples.

A.2 Attention Mechanism
Self-Attention Mechanism. Suppose the input sequence is with
a size of 𝑇 × 𝐷 , representing the temporal sequence length and
feature dimensions, respectively. Each self-attention head computes
Q,K,V ∈ R𝑇×𝐻 by a linear transformation, representing Query
Matrix, Key Matrix, and Value Matrix, respectively.

Q = XWQ,K = XWK,V = XWV (9)

where WQ,WK,WV ∈ R𝐷×𝐻 are trainable parameters, 𝐻 is the
hidden layer dimension. Then the output of this self-attention head
is computed as

Self-Attention(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK
T

√
𝐻

)V (10)

For each query vector qi, the self-attention mechanism calculates its
similarity with each key vector ki as weights, to perform a weighted
sum on all value vectors vi. Therefore, the length of the output
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sequence length only depends on the number of query vectors. In
other words, the Transformer is capable of handling sequence data
of variable length without requiring explicit specification.
Multi-Head Mechanism. Multi-head attention allows the net-
work to attend to different aspects of the input sequence in parallel,
by computing multiple sets of attention weights with different
linear projections of the input vectors.

Multi-head(Q,K,V) =𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)WO (11)

where ℎ𝑒𝑎𝑑𝑖 = Self-Attention(XWQ
i ,XW

K
i ,XW

V
i ).W

Q
i ∈ R𝐷×𝐻𝑘 ,

WK
i ∈ R𝐷×𝐻𝑘 ,WV

i ∈ R𝐷×𝐻𝑣 , and WO ∈ R𝐻𝑣ℎ×𝐷 are projection
parameters. The parameter ℎ denotes the number of self-attention
layers (heads). Typically, 𝐻𝑘 = 𝐻𝑣 = 𝐷/ℎ.
Position-Wise Feed-Forward Networks. Position-wise feed-
forward networks are employed to apply a non-linear transforma-
tion to the output of the self-attention mechanism.

𝐹𝐹𝑁 (𝑥) =𝑚𝑎𝑥 (0, 𝑥W1 + 𝑏1)W2 + 𝑏2 (12)

B Additional Details of Evaluations
B.1 Additional Details of Datasets

• Intrusion Detection.Malicious traffic identification is to recog-
nize various encrypted attack traffic from benign traffic. CIC-
IDS2017 dataset and CIC-IDS2018 dataset [34] are included
in this task. The CIC-IDS2017 dataset collects network traffic
across five days, including benign and a series of attacks such
as Botnet, DDoS, Patator, etc. The CIC-IDS2018 dataset is an
upgrade to the 2017 version dataset. It is more diverse and com-
prehensive and is based on user profiles that contain abstract
representations of events and behaviors on the network.

• Desktop Application Identification. Application identification
aims to classify encrypted application traffic into specific ap-
plication categories. CrossNet2021 dataset [35] contains traffic
data from 20 categories of desktop applications such as 360,
Sougou, and CSDN in two practical scenarios, i.e., stable (Sce-
narioA) and production (ScenarioB) networks. The traffic was
captured using tcpdump, including 2.5GB of data. Note that the
same categories of applications in two scenarios with different
network quality-of-service (QoS), such as various bandwidths
and channel disturbance, can be used to evaluate the model
robustness in cross-network identification tasks.

• VPN Traffic Classification. As Virtual Private Networks (VPNs)
are popular for bypassing censorship as well as accessing geo-
locked services, which are difficult to detect due to their pro-
tocol obfuscation, we include the ISCXVPN2016 dataset in the
experiment. It contains pure encrypted traffic from common
applications, e.g., Facebook, Netflix, Skype, etc. The applica-
tions are encrypted with various security protocols, including
HTTPS, SSH, and proprietary protocols.

• Malware Identification. The CIC-InvesAndMal2019 [36] dataset
collected traffic of 426 malicious and 5065 benign applications
on real smartphones. The traffic types can be divided into five
categories including Benign, Adware, Ransomware, Scareware,
and SMS Malware.
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Figure 14: Cumulative distribution of similar intra-flow fea-
tures on CIC-IDS2017/2018, CrossNet2021, ISCXVPN2016,
and CIC-InvesAndMal2019 datasets.

B.2 Additional Details of Baselines
• FlowPrint [31] automatically finds temporal correlations
among destination-related features of network traffic and uses
these correlations to generate app fingerprints.

• FS-Net [11] uses flow length sequences to classify encrypted
traffic via the Gated Recurrent Unit.

• Whisper [23, 25] expresses traffic as frequency domain infor-
mation through the fast Fourier transform and then performs
robust identification.

• ET-BERT [32] handles the raw packets in hexadecimal and
deploys a pre-trained transformer to represent and learn the
contextualized datagram-level information.

• FlowLens [13] calculates statistical histograms of packet size
distribution and adopts machine learning models (e.g., XG-
Boost) to perform classification.

• HyperVision [33] is an unsupervised malicious traffic de-
tection system that could capture flow interaction patterns
represented by the graph’s structural features.

• nPrint [7] is a tool that generates a unified packet represen-
tation and then leverages AutoML to fit the tabular data.

B.3 Distribution of Similar Intra-flow
To develop experiments, we first compute the similarity based on
intra-flow features, including packet time interval, packet size, IP
TTL, six TCP Flags (SYN, FIN, ACK, PSH, RST, URG), TCP window
size, and UDP length. Between pairs of flows, where the similar-
ity is a float number between 0 and 1. The cumulative distribution
curves of the similarity calculation results of four groups of datasets
are shown in Figure 14. We divide the interval [0, 1] evenly into
ten parts (i.e., {0.1, 0.2, · · · 1.0}), and then calculate model perfor-
mance according to test data of different similarity intervals. We
calculate the similarity of intra-flow features on CIC-IDS2017/2018,
CrossNet2021, ISCXVPN2016, and CIC-InvesAndMal2019 datasets.
Figure 14 shows that the similarity of the intra-flow features within
the dataset is mainly between 0.15 and 0.4.
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