
GameRTS: A Regression Testing Framework for
Video Games

Jiongchi Yu1†, Yuechen Wu2†, Xiaofei Xie1∗, Wei Le3, Lei Ma4,5, Yingfeng Chen2∗, Jingyu Hu2 and Fan Zhang6,7
1 Singapore Management University, Singapore

2 NetEase Fuxi AI Lab, China 3 Iowa State University, USA
4 University of Alberta, Canada 5 The University of Tokyo, Japan

6 Zhejiang University, China 7 Zhengzhou Xinda Institute of Advanced Technology, China.

Abstract—Continuous game quality assurance is of great
importance to satisfy the increasing demands of users. To
respond to game issues reported by users timely, game com-
panies often create and maintain a large number of releases,
updates, and tweaks in a short time. Regression testing is an
essential technique adopted to detect regression issues during
the evolution of the game software. However, due to the special
characteristics of game software (e.g., frequent updates and
long-running tests), traditional regression testing techniques are
not directly applicable. To bridge this gap, in this paper, we
perform an early exploratory study to investigate the challenges
in regression testing of video games. We first performed empirical
studies to better understand the game development process, bugs
introduced during game evolution, and the context sensitivity.
Based on the results of the study, we proposed the first regression
test selection (RTS) technique for game software, which is a
compromise between safety and practicality. In particular, we
model the test suite of game software as a State Transition
Graph (STG) and then perform the RTS on the STG. We
establish the dependencies between the states/actions of STG and
game files, including game art resources, game design files, and
source code, and perform change impact analysis to identify the
states/actions (in the STG) that potentially execute such changes.
We implemented our framework in a tool, named GameRTS, and
evaluated its usefulness on 10 tasks of a large-scale commercial
game, including a total of 1,429 commits over three versions. The
experimental results demonstrate the usefulness and effectiveness
of GameRTS in game RTS. For most tasks, GameRTS only
selected one trace from STG, which can significantly reduce the
testing time. Furthermore, GameRTS detects all the regression
bugs from the test evaluation suites. Compared with the file-level
RTS, GameRTS selected fewer states/actions/traces (i.e., 13.77%,
23.97%, 6.85%). In addition, GameRTS identified 2 new critical
regression bugs in the game.

I. INTRODUCTION

Video games have been an important part of Internet activ-
ities and daily life for many people worldwide. According to
a recent report [1], more than 1 in 3 web users play video
games every day, and around half of them (51%) play at
least once a week. The COVID-19 lockdowns hurdle further
push the heavy usage of Internet including game domains.
With the increasing popularity of games, the quality of game
software becomes essential. Game bugs not only can impact
user experience, but have caused financial loss and even lead
to security and privacy risks [2].

∗ Corresponding authors
† Contributed equally

To accommodate customers’ sentiments and feedback, game
software is often frequently updated, and creates and main-
tains a large number of versions. According to a previous
study [3], the industrial game software can be updated with
three internal versions per day. The rapid software evolution
can pose big challenges for game quality. To identify the issues
during version updates, regression testing is widely applied
to traditional software. It re-executes the already executed
test cases to ensure that existing functionalities do not break,
and the new changes in the software do not introduce bugs.
Regression testing can be rather costly, taking up to 80% of
the testing budget [4]. For example, in Google, there are over
100 million test cases running each day [5]. To reduce the
cost, the researchers have been actively developing regression
test selection (RTS) [4]–[9], aiming to select tests that are
affected by the software update changes. Similarly, consider
the frequent update of video games that require much time to
run all test cases, RTS is also necessary for game testing.

The general RTS usually includes two tasks [5]: 1) to
identify which software elements can be executed by a given
test case (i.e., test dependency) and 2) to analyze the changed
software elements. Then test cases that execute any changed
software elements are selected. Existing RTS is difficult to
be directly applied to video game software due to its unique
characteristics. Specifically, a test case of a video game is
mainly a sequence of actions that the player can perform, and
it returns the state transitions from the game software. Often,
many (sometimes even all) test cases can reach a same state
(e.g., a common game scenario). If this state is affected by the
game changes, the conventional RTS techniques would select
all the test cases. This is not affordable as running a game
test can take tens of minutes to hours. Moreover, the game
space is often very huge, and there are a large number of test
cases to select from. To the best of our knowledge, there is
still no effective RTS technique for game software, and the
game companies mainly rely on ad-hoc strategies (e.g., our
collaborating company selects and runs the shortest test cases
that can cover the basic tasks after the game update). Motivated
by this, this paper aims to make an early attempt to investigate
regression test selection for video game software.

To this end, we first perform a study to investigate the
development and the evolution process in industrial games
(Section II) to better understand the characteristics of the game
development and the bugs introduced during game evolution.

1



0

2
1

4
3

5

a0
a1

a2 a3

a4

Test Construction & Dependency Collection

Exploration
Game0

Game1

Art Resource

Flowcharts

Programs

Change
Computation

Change Impact Analysis

0

2
1

4
3

5

a0
a1

a2 a3

a4

Regression Test Selection

0

2

5

a1
a2

0

1

3

a0

a4
Game0

Test Update (Game1)

0

2
1

45

a0
a1

a2 a3

6

Method (Code) Node (Flowchart)

File (Resource)

3. Flowchart

terrain=player.GetLocation

player.HaveItem(“seed“)

terrain.GetStatus(“seed“)

terrain.Type==“cropland”

terrain.GetStatus(“grown”)

terrain.ShowAppearance(“seedling“)

terrain.ShowAppearance(“tree“)

wait(60)

True

False

Change

���6 
�����6��54

 	���6������"62�4�#����1 .�53��53�

� ��4���4�������!��� �1��

� �����53� ������.�53 �1��

� �5 �5�.�4������562�4��

� �5!���� ����� �4� ��� �����662���

� �� � �662����5 �53�

1. Code

Player.GetLocation

Player.UseItem

Terrain.ShowAppearance

Terrain.GetStatus

Player.HaveItem ……

2. Resource

……

Fig. 1: A simplified example of a video game task

Specifically, we found that the game development often in-
cludes several stages: game art resources (e.g., 2D and 3D
art files), game design (e.g., game sketches, storylines, game
character features and interactions), and code implementation
(e.g., the basic function such as the use of a skill), which can
cause regression issues. We manually investigated a total of
2,763 real-world bugs and analyzed the root cause of these
bugs. We found that all of the above three stages in the
game development can cause bugs during game evolution and
most of the bugs (78.85%) are relevant to the game designing
process, indicating that the changes in these three strategies
should be considered in the RTS. In addition, we observe that a
game can contain a large number of states, and the abstraction
can be used to reduce the complexity and state space of testing.

To address the aforementioned challenge that all test cases
could be selected using conventional RTS, we conduct another
study to understand the context sensitivity of video game
playing. We found that unlike traditional programs, the game
playing manifest Markov property [10] in that its future actions
usually depends on only the current state, but not the past
history (i.e., paths and previous states/actions that lead to
the current state ). For example, to reach a game state (e.g.,
mission accomplished), players can use different strategies to
play the game, which can finally reach the same game state.
Based on this observation, in our work, we only select one
test case that reaches a state, instead of covering all the test
cases that come from different contexts before reaching the
same state.

We propose a novel framework, named GameRTS, specially
designed for regression testing of video games. In particular,
given a new game software and a set of test cases, we first
perform the abstraction and model them as a State Transition
Graph (STG). We then develop static and dynamic analysis
to establish the dependencies between test cases and various
game software elements (i.e., art resource files, design files
and source code). Unlike the existing RTS techniques that
calculate the dependencies between software elements and the
whole test case, we propose to build the game test dependency

between game files and abstract states/actions of the STG,
which can further reduce the number of selected tests. When
the game software is updated, a change impact analysis is
performed on the game files between the two versions. Based
on the test dependencies and the change information, we adopt
a greedy-based selection strategy to select a small number
of test cases (i.e., traces in the STG) to cover the states and
actions that are affected by the changes.

We implemented GameRTS and evaluated the tool on 10
tasks of a large-scale industrial game (including 1,429 commits
between three versions). The experimental results demon-
strate that 1) GameRTS can achieve better balance between
practicality and safety. In most cases (except one), only 1
trace is selected, which can significantly reduce the testing
time. Moreover, =GameRTS detects all the regression bugs.
2) Our fine-grained test dependencies can select much fewer
state/action/traces than the file-level dependency (i.e., 13.77%,
23.97%, 6.85%) and 3) GameRTS identified 2 critical bugs in
the latest version of the game. In addition, GameRTS has been
used in more than 15 games.

The main contributions of this paper include:
• We performed an empirical study to characterize the game

evolution (on 2,736 real bugs) and its context sensitivity.
• We proposed a novel RTS framework that is more light-

weight and practical. To the best of our knowledge, this is
the first technique that performs RTS on a state transition
graph. Particularly, the dependency analysis and selection
are performed on the states and actions of the STG instead
of the whole test, which can reduce the complexity.

• We implemented an instance of the framework GameRTS1

for video game software. Without loss of generality,
GameRTS can be extended to other software with GUI.
A fined-grained change impact analysis is developed on
different kinds of files, i.e., resource files, game design files,
and source code.

• We evaluated the effectiveness and efficiency of GameRTS
on 10 tasks on a large-scale industrial video game across 3
versions. Moreover, GameRTS found 2 new regression bugs
in the latest version.

II. AN EMPIRICAL STUDY ON GAME RTS

A. Three Sources of Game Software

A typical video game development [12], [13] usually in-
cludes preparing art-effect resources(e.g., the video and 3D
model), designing gameplay rules (e.g., storylines and char-
acters), and achieving basic utility code (e.g., maintaining the
status of a player and facilitating network communications).

Definition 1: A video game can generally be represented as
a 3-tuple (P,R,D), where P is a set of source code files that
implement the basic functions, R is a set of art resource files,
and D is a set of design files. A game software implements a
set of game tasks, where each game task uses a flowchart in
a design file to define the detailed process of the task.

1The detailed configuration and experimental data is available on our
website [11].

2

https://sites.google.com/view/gamerts/


TABLE I: Regression bugs in a video game

Priority Art Flowchart Code
High 36 1,192 39

Normal 79 1,375 29
Low 1 12 0

Example: Figure 1 shows a simplified game task, as shown
in the upper left corner: (1) the player first accepts the task
from a non-player character (NPC) Tom; (2) the player finds
another NPC Mike and starts a conversation with Mike; (3)
the player receives some seeds by chatting with Mike; (4) the
player finds some cropland to sow these seeds; (5) apples will
ripen in a short period, and (6) the player harvests the apples
and give them to Tom.

To implement the task, art resources, design flowcharts and
source code are required as shown in Figure 1. Specifically,
the code implements Player and Terrain classes. For
example, Player.UseItem supports players to use their
items. Player.GetLocation gets the location of a player
on the map. The resource includes the game art provided
by artists, e.g., the apple tree and the map. The flowchart
records the workflow of the task. First, the designer uses
Player.UseItem to check whether the player has “seeds”.
Then, it calls Player.GetLocation to check whether the player
finds some cropland; if so, the UI will show the seed sowing
process via terrain.ShowAppearance. After 60 sec-
onds, it shows the apple tree growing on the cropland. At each
step of the flowchart, the corresponding code will be invoked
and the art resources will be fetched. The flowchart combined
with code and art resources is automatically compiled into the
game executable.

The evolution of the game potentially involves the changes
of all three sources. For example, in the Flowchart of Fig-
ure 1, the yellow box indicates that we add a new node
terrain.GetStatus("seed") in the new version. This
change fixes a game logic bug. In the game, after the players
obtain the seeds, they can send the seeds to others (this step
is defined in another game task and not shown in Figure 1).
If it does not check the existence of seeds before growing
them using terrain.GetStatus("seed"), the seeds
will incorrectly grow in the terrain.

In Table I, we present the results of our empirical studies on
regression bugs. We selected a large-scale industrial game as a
subject. We collected 2,763 bugs, starting from August 2020,
back to more than two years until June 2018. We worked with
developers in the game company and manually studied which
game file changes caused such bugs as well as the importance
of the bugs, marked as High, Normal and Low priorities in the
figure. The results show that the changes to three sources all
can lead to bugs. To test the new game version for detecting
such bugs, the company usually re-runs all tests or runs only
some in an ad-hoc fashion for efficiency. To address this
issue and improve the effectiveness, RTS techniques that can
systematically select necessary test cases are needed.

0

2
1

4
3

5

a0
a1

a2 a3

a4

Test Case Representation & Dependency

Exploration
Game0

Game1

Art Resource

Flowcharts

Programs

Change
Computation

Change Impact Analysis Regression Test Selection

0

2

5

a1
a2

0

1

3

a0

a4
Game0

Test Update (Game1)

0

2
1

45

a0
a1

a2 a3

6

Method (Code) Node (Flowchart)

File (Resource)

3. Flowchart

terrain=player.GetLocation

player.HaveItem(“seed“)

terrain.GetStatus(“seed“)

terrain.Type==“cropland”

terrain.GetStatus(“grown”)

terrain.ShowAppearance(“seedling“)

terrain.ShowAppearance(“tree“)

wait(60)

True

False

Change

���6 
�����6��54

 	���6������"62�4�#����1 .�53��53�

� ��4���4�������!��� �1��

� �����53� ������.�53 �1��

� �5 �5�.�4������562�4��

� �5!���� ����� �4� ��� �����662���

� �� � �662����5 �53�

1. Code

Player.GetLocation

Player.UseItem

Terrain.ShowAppearance

Terrain.GetStatus

Player.HaveItem ……

2. Resource

……

Tom (ID)

A.arp ……

B.tga ……

0

2
1

4
3

5

a0
a1

a2 a3

a4

<v0, Tom, …, vn>

Sow the seeds

Player.GetLocation

Terrain.GetStatus

Terrain.ShowAppearance

Dependency

B

A

C

A

B

1

2 3
1 2

4

A

B

1 1

C

Cycle Parallel Edge Non-deterministic

Versionn

Versionn+1

State Transition 
Graph (STG) Construction

< !0, !4…>
< !1, !3…>

….
Test Cases

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4 STG-based
Dependency Analysis

Method
(Code)

Node
(Flowchart)

File
(Resource)

Change Impact Analysis
�Code, Flowchart, Resource�

Greedy-based Regression
Test Selection

0

2

5

0

1

3

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4"!1
"!2

"!0

"!4Versionn

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4

terrain=player.GetLocation

terrain.GetStatus(“seed“)

terrain.Type==“cropland”

terrain.ShowAppearance(“seedling“)

0

1

2
3

4

a0 a1

a2 a3
T1:�…, a0, a1, …)
T2:�…, a2, a3, …)

m

n

…
…

…

0

1

2
3

4

a0 a1

a2 a3
T1’:�…, a0, a3, …)
T2’:�…, a2, a1, …)

m

n

…
…

…… …

Fig. 2: Evaluation of Context Sensitivity

B. Game Execution Behaviors Manifesting Markov Property

Another challenge we found is that some game changes
often affect most or even all test cases. For example, if we
change the resource file that is used in a common state of
all test cases, all test cases could be affected, which makes
existing RTS techniques (that calculate dependencies between
changes and the test case) not work well. Thus, we conducted
an empirical study towards understanding the effect of the
game context in game playing.

Informally, the Markov property of game execution means
when different test cases reach a same state with different
contexts, the different contexts in the same state have little
effect on subsequent executions. For example, players may
adopt different strategies to complete the same game quest
and reach a same state, which usually has no impact on the
following actions and states. Note that the context sensitivity
will determine the granularity of regression test selection
analysis. If the context is sensitive, we need a fine-grained
dependency analysis and test selection such that test cases
with different contexts can be selected. If insensitive, then we
can consider only selecting minimal test cases that cover all
changed states for efficiency.

The design of the empirical study is presented in Figure 2.
There are two test cases (T1 and T2) that can reach the
same state s2 (called intersection state) from different playing
histories (i.e., different context). Consider T1 that covers the
state sequence (. . . , s0, s2, s3, . . . , sm), we try to execute a
sequence of actions (T ′

1) that include the actions of T1 before
the common state s2 (context from T1) and the following
actions of T2 after s2. If T ′

1 can be replayed successfully
(i.e., T ′

1 can lead to the state transitions 0 → 2 → 4 → n),
then we could determine the context of T1 has little effect
on the future execution (i.e., insensitive). Similarly, we try
to use the context of T2 and replay the following actions
of T1 (i.e., T ′

2). Note that different strategies reaching the
same state will have similar effects on subsequent executions,
while the different strategies reaching the same status would be
considered context-insensitive due to the similar final status.
We measure the context sensitivity based on the success rate
of the cross execution. The higher the success rate, the less
sensitive the context.

We select all the test cases used in our evaluation (see
Section VI) to identify all intersection states among them.
Each intersection state has M predecessors and N successors
where M > 1, denoted as (M,N) intersection. Finally, we
collected an average of 119.8 (M,N) intersections (for each
task), including 56.9 (M, 1) intersections. We construct 500

3



0

2
1

4
3

5

a0
a1

a2 a3

a4

Test Construction & Dependency Collection

Exploration
Game0

Game1

Art Resource

Design Files

Code

Change
Computation

Change Impact Analysis

0

2
1

4
3

5

a0
a1

a2 a3

a4

Regression Test Selection

0

2

5

a1
a2

0

1

3

a0

a4
Game0

Test Update (Game1)

0

2
1

45

a0
a1

a2 a3

6

CodeFile DesignFile

ResourceFile

0

2
1

4
3

5

a0
a1

a2 a3

a4

Test Construction & Dependency Collection

Exploration
Game0

Game1

Art Resource

Design Files

Code

Change
Computation

Change Impact Analysis

0

2
1

4
3

5

a0
a1

a2 a3

a4

Regression Test Selection

0

2

5

a1
a2

0

1

3

a0

a4

Test Update (Game1)

0

2
1

45

a0
a1

a2 a3

6

CodeFile
DesignFile

ResourceFile

0

2

5

a1
a2a4

0
1

3
a0

0

2

4

a1

a3
…

Test Cases

State Transition 
Graph Construction

Game0 Game1

0

2
1

4
3

5

a0
a1

a2 a3

a4

Method (Code)
Node (Flowchart)

File (Resource)

Change Computation

Mapping

0

2
1

4
3

5

a0
a1

a2 a3

a4

Regression Test Selection

0

2

5

a1
a2

0

1

3

a0

a4

Graph Update

0

2
1

45

a0
a1

a2 a3

6

Art Resource

Flowcharts

Code

State Transition Graph
Construction

Version0 Version1

Change
Computation

0

2
1

4
3

5

a0
a1

a2 a3

a4

Method
(Code)

Node
(Flowchart)

File
(Resource)

Change Impact
Analysis

0

2
1

4
3

5

a0
a1

a2 a3

a4

Regression Test
Selection

0

2

5

a1
a2

0

1

3

a0

a4

Graph Update

0

2
1

45

a0
a1

a2 a3

6

Art Resource

Flowcharts

Code

Test Cases

0

2
1

4
3

5

a0
a1

a2 a3

a4

STG-based
Dependency Analysis

State Transition Graph
Construction

Version0 Version1

0

2
1

4
3

5

a0
a1

a2 a3

a4

Method
(Code)

Node
(Flowchart)

File
(Resource)

Change Impact
Analysis

�Code, Design,
Resource�

0

2
1

4
3

5

a0
a1

a2 a3

a4

Regression Test
Selection

0

2

5

a1
a2

0

1

3

a0

a4

Test Cases

0

2
1

4
3

5

a0
a1

a2 a3

a4

STG-based Dependency
Analysis

Version0

Version1

State Transition 
Graph (STG) Construction

< !0, !4…>
< !1, !3…>

….
Test Cases

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4 STG-based
Dependency Analysis

Method
(Code)

Node
(Flowchart)

File
(Resource)

Change Impact Analysis
�Code, Flowchart, Resource�

Greedy-based Regression
Test Selection

0

2

5

0

1

3

a

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4"!1
"!2

"!0

"!4Version0

Fig. 3: The Overview of GameRTS

pairs of traces for the cross execution, where each pair has
at least one intersection (N > 1). The final results show
that the success rate of the cross execution is 100%, which
indicates the context insensitivity of game execution. More
detailed results can be found on our Website [11].

III. PROBLEM FORMULATION AND OVERVIEW

A. Problem Definition

We formulate the definition of regression test selection
problem as follows:

Definition 2 (Game Regression Test Selection): Given a
game software S, the modified version S′, a given test suite T
where each t ∈ T is a sequence of actions and an abstraction
function α that can be used to build a state transition graph g,
the game regression test selection (RTS) is to find a test suite
T ′ from the graph g, with which to test S′.

The algorithm of finding the test suite T ′ depends on the
test goal. For example, in non-game software, RTS techniques
usually consider two test goals [5]: precision to avoid selecting
non-affected tests by game changes and safety to avoid missing
any affected tests that can detect regression bugs. Based on
our empirical results, we found that game changes are likely to
affect all tests, i.e., we have to select all tests for safety. Hence,
game RTS is a trade-off between practicality and safety,
especially for large-scale video games where running a test
takes a very long time. In this paper, our goal is to design an
effective and practical RTS framework for detecting regression
bugs effectively and efficiently. Thanks to the Markov property
of game execution (see Section II-B), we design a practical
tool GameRTS, which is theoretically not safe but does not
miss any known regression bugs.

B. Overview

Figure 3 shows the overview of GameRTS for video games.
The inputs include a given set of test cases and two or more
versions of the game. Each test case is a sequence of actions
a player will take to navigate through the games in GUI. Our
first step is to construct a State Transition Graph (STG) to
represent the game. Typically, the number of actions and states
can be very large when running a game, so the STG is built
on the abstract states and transitions.

In the second step, we perform the test dependency analysis
based on STG and link the states and transitions in STG to the
corresponding game software files (i.e., the art resource, the
design flowchart, and the source code). The abstraction in STG
leads to the small size of states and transitions, so we only
need to calculate a small number of dependencies. GameRTS
computes test dependency at different granularity for different
types of files. For the art resources, we perform file-level
dependency analysis, while for design files(i.e., flowcharts),
we map each state and the transition of the STG to the nodes
and edges in the flowchart; and for source code, we perform
the method-level analysis.

After a new version of game software (V ersion1) is
constructed, we analyze changes between the older version
V ersion0 and the new version V ersion1 for the art resource
files, the design flowchart and source code. Then, we leverage
change impact analysis to identify those states and transitions
in the STG that are affected by the changes (see the red
nodes/transitions in Figure 3).

Based on the STG, we propose a greedy-based RTS tech-
nique with the guidance of the affected states and transitions
to select as few test cases as possible. We re-run the selected
test cases on the new version (i.e., V ersion1) to detect the
regression bugs. For the test cases that are no longer feasible
to the new version due to the changes, we applied the random
exploration strategy from the last reached state. Finally, we
update the STG of the old version to the new version and col-
lect the new dependencies after running regression tests. The
updated STG will be used in future versions (e.g., V ersion2).

IV. STATE TRANSITION GRAPHS FOR GAMES

For regression test selection, a set of test cases are given for
the first version. A test case for a game is a valid sequence of
actions (a0, . . . , an) that can be run in the game, leading to a
sequence of state transitions (s0, . . . , sn, sn+1), where states
are a representation of the game (e.g., whatever information
it can be seen on the screen) and actions are something the
game player can perform to update game states (e.g., moving
and attacking). We use As to represent a set of actions that
can be executed under a state s.

4



A state can be generally represented as a vector <
v1, v2, . . . , vn >, where vi is an attribute in the game, e.g.,
items of the player and location. Essentially, a game can have
a large number of states or even infinite states if the variable
vi is continuous (e.g., health points). The state exploration
problem increases the complexity of the regression analysis,
e.g., building the dependencies between states and changed
game files. To reduce the complexity, we conduct the state
and action abstraction to build a state transition graph. Note
that the abstraction (i.e., α in Definition 2) requires some
domain knowledge of the target software, which could vary
in different kinds of software. We emphasize that developing
different abstraction techniques is orthogonal to our proposed
RTS framework. In this paper, for the selected video games,
we work together with the corresponding developers to design
the abstraction strategies as follows.

State Abstraction. Generally, the states of video games
usually can be classified as the environment state and the
player state. For example, the player state mainly contains
the player name, the player ID, the location, the health point,
the magic point, the profession, the items and some buff.
The environment state mainly contains some monsters, the
NPC information similar with the player state (e.g., name,
ID and the location), the dropped items, the trigger in the
map and etc.. The major abstraction includes three steps:
1) removing the unimportant attributes such as name and
profession; 2) ignoring the environment information that is
far from the current player (e.g., NPCs who are 100 meters
away are considered irrelevant information); 3) adopting the
interval abstraction that discretizes the continuous values (e.g.,
location information) into buckets, following the previous
research [14]. For example, for the coordinate of the location,
we divide the range to equal buckets (e.g., 100 meters per
bucket); For the health points, we abstract them as a binary
value (i.e., alive if greater than 0, otherwise dead). The states
fall into the same bucket will be merged as an abstract state.

Action Abstraction. For the actions between two abstract
states, we perform an abstraction that merges a sequence of
concrete actions (a0, a1, . . .) as one abstract action â0. Con-
sider the example in Figure 1, to find and start the conversation
with Mike, the player needs to perform a sequence of actions
such as moving on the map, looking at a person and confirming
that it is Mike. We use an abstract action goto to represent this
moving process. goto is an internal API2 in the games that
can automatically play the game. The abstract actions make
the state/action space unnecessarily large and complex.

Example. Take Figure 1 as the example, the concrete state
of the player includes many variables such as the detailed
information of all NPCs, items, portal and current player in
the map, which are too fine-grained. After the abstraction, one
abstract state (in step 2) can be
{’env’:{’npc’:[{’id’:1001, ’hp’:alive},

’loc’:{’x’: 125,’y’: 961, ’z’:0}]},

2Video games provide the inner functions that can help players to automat-
ically accomplish some missions, e.g., to find a specific NPC or fight against
some monsters automatically.

0

2
1

4

3

5

a0
a1

a2 a3

a4

Test Case Representation & Dependency

Exploration
Game0

Game1

Art Resource

Flowcharts

Programs

Change
Computation

Change Impact Analysis Regression Test Selection

0

2

5

a1

a2

0

1

3

a0

a4
Game0

Test Update (Game1)

0

2
1

45

a0
a1

a2 a3

6

Method (Code) Node (Flowchart)

File (Resource)

3. Flowchart

terrain=player.GetLocation

player.HaveItem(“seed“)

terrain.GetStatus(“seed“)

terrain.Type==“cropland”

terrain.GetStatus(“grown”)

terrain.ShowAppearance(“seedling“)

terrain.ShowAppearance(“tree“)

wait(60)

True

False

Change

Step Description

1 Accept the “plant” task from Tom.

2 Find and chat with Mike.

3 Get some seeds from Mike.

4 Go to find a cropland.

5 Sow the seeds and harvest apples.

6 Give apples to Tom.

1. Code

Player.GetLocation

Player.UseItem

Terrain.ShowAppearance

Terrain.GetStatus

Player.HaveItem ……

2. Resource

……

Tom (ID)

A.arp …

B.tga …

0

2
1

4

3

5

a0
a1

a2 a3

a4

<v0, Tom, …, vn>

Sow the seeds

player.GetLocation

terrain.GetStatus

terrain.ShowAppearance

Dependency

B

A

C

A

B

1

2 3
1 2

4

A

B

1 1

C

Cycle Parallel edge Non-deterministic

Versionn

Versionn+1

State Transition 
Graph (STG) Construction

< 𝑎0, 𝑎4…>
< 𝑎1, 𝑎3…>

….
Test Cases

0

2
1

4

3

5

"𝑎0
"𝑎1
"𝑎2 "𝑎3

"𝑎4 STG-based
Dependency Analysis

Method
(Code)

Node
(Flowchart)

File
(Resource)

Change Impact Analysis
（Code, Flowchart, Resource）

Greedy-based Regression
Test Selection

0

2

5

0

1

3

0

2
1

4

3

5

"𝑎0
"𝑎1
"𝑎2 "𝑎3

"𝑎4

0

2
1

4

3

5

"𝑎0
"𝑎1
"𝑎2 "𝑎3

"𝑎4"𝑎1
"𝑎2

"𝑎0

"𝑎4
Versionn

0

2

1

4

3

5

&𝑎0
&𝑎1

&𝑎2
&𝑎3

&𝑎4

terrain=player.GetLocation

terrain.ShowAppearance(“seedling“)

…

Fig. 4: Example of test dependencies

’player’:{’hp’:alive, ’bag’:[3006, 3009],
’loc’:{’x’: 0-100,’y’: 700-800, ’z’:0-100}}}

The concrete state can be found on the website [11]. In
the abstract state, we ignore and simplify the environment
information (e.g., some NPCs and the attributes are ignored).
The health points (hp) are abstracted as a binary (i.e., die or
alive). The location (x, y, z) of the player is abstracted into
buckets, e.g., 0-100. The location of the NPC is concrete value
because this NPC does not move. The abstract actions can be:
[(’talk’, 1001), (’goto’, 1001), (’useitem’, 3006),...]

where talk, goto and useitem are inner APIs, which can largely
remove the actions and states. For example, the player can find
the NPC 1001 within only one abstract action by using goto.
Without goto, we need a sequence of concrete actions (i.e.,
moving up, down, left or right) taken from the player.

Definition 3 (STG): A State Transition Graph (STG) is a
5-tuple (S,A, T, ŝ0, F ), where S is a set of abstract states, A
is a set of abstract actions, T : S × A → S is the transition
function, ŝ0 ∈ S is an initial state (e.g., starting the game
playing) and F is a set of accepting states (e.g., accomplishing
the game or entering a stuck state).

V. STG-BASED REGRESSION TEST SELECTION

A. Test Dependency Analysis on STG

The goal of test dependency analysis is to determine for a
given test case, which files or methods will be exercised by the
test case. Here, we determine states and actions in the STG that
can be affected by modified game files. In the STG, the states,
which represent the status of the game at some points, are
more related to the resource files. The actions, which represent
the operations of players, are more related to the flowcharts
and the code. The flowcharts and the code define the rules
and the steps taken during the game playing. We develop a
static-based method to calculate the state dependencies and a
dynamic-based method to calculate the action dependencies.
Figure 4 shows an example of test dependency constructed for
Figure 1. The STG nodes and edges have been linked to the
art resource files (on the left) and the design flowchart (on the
right). We use this figure to explain more details of state and
action dependencies in the following.

a) State Dependencies: We implement a static analysis
tool to build the relationship of the art resource files based
on their def-use relations. The relationship is hierarchical and
can be represented using a tree. Each node of the tree is a
file. The parent node uses the files from its children nodes.

5



For example, in Figure 4, the left tree shows that the model
Tom is constructed using the resource files such as the model
file (e.g., A.arp is the model file of Tom) that is created using
other files (e.g., the image B.tga).

Each art file has a unique ID (e.g., 1001 for Tom) that
is used by the game software. We use this ID to establish
the dependencies with the states in the STG. For example,
in Figure 4, suppose that the state 5, shown in the middle,
is < v0, T om, . . . , vn >. This state has a dependency on the
model Tom. Any changes in the art files under the tree of Tom
will mark this state as affected by the changes.

b) Action Dependencies: For actions, we execute the
existing test cases and dynamically monitor the code and
the flowchart to collect the set of functions in code and the
set of nodes in the flowchart, which are accessed during the
execution of an action. To collect the affected functions, we
implemented the flame graph [15] for the code instrumen-
tation, e.g., at the start of the constructor, the start of the
static method and the start of the class method, which can
record the methods called. Note that the dependency analysis
conducted with different granularities (e.g., method-level or
file-level) could affect the precision (i.e., the number of tests
selected).

To monitor the activation of nodes in the flowchart, we
instrumented the code, which is automatically generated
based on the flowchart. When an action is executed, the
instrumentation will return which nodes are activated
in the flowchart. Note that, an action can activate
multiple nodes of a flowchart. Consider the example in
Figure 4, when we execute the action “sow the seeds”,
we observe that the nodes terrain = player.GetLocation,
terrain.Type == ”cropland”, terrain.GetStatus(”seed”)
and terrain.ShowApperance(”seeding”) are activated.
The functions Player.GetLocation, Terrain.GetStatus,
Terrain.ShowAppearance are invoked.

Definition 4 (STG-based Test Dependency): Given a game
(P,R,D) and the corresponding STG (S,A, T, ŝ0, F ), we
define its test dependencies as three functions {fR, fP , fD},
where fR : S → R represents the dependencies between
the states and the art resource files, fP : A → Pm and
fD : A → Dn represent the dependencies between the actions
and the methods of game software (i.e., Pm) and the flowchart
nodes (i.e., Dn), respectively.

B. Change Impact Analysis for Games

Given two versions of game software, we identify their
changes in terms of the three types of game files. We perform
change analysis for different types of files. Specifically, for
art files, we first identify which files are added, deleted, and
changed based on the commit information. The dependencies
of these files are marked in the tree we constructed. For the
code changes, we apply the Lua Parser [16] to obtain the
abstract syntax tree (AST) of the Lua program. From the AST,
we can obtain the methods as well as line numbers of each
method. A flowchart is saved into a JSON file. For a changed
file, we parse the nodes of each flowchart, and compare the

0

2
1

4
3

5

a0
a1

a2 a3

a4

Test Case Representation & Dependency

Exploration
Game0

Game1

Art Resource

Flowcharts

Programs

Change
Computation

Change Impact Analysis Regression Test Selection

0

2

5

a1
a2

0

1

3

a0

a4
Game0

Test Update (Game1)

0

2
1

45

a0
a1

a2 a3

6

Method (Code) Node (Flowchart)

File (Resource)

3. Flowchart

terrain=player.GetLocation

player.HaveItem(“seed“)

terrain.GetStatus(“seed“)

terrain.Type==“cropland”

terrain.GetStatus(“grown”)

terrain.ShowAppearance(“seedling“)

terrain.ShowAppearance(“tree“)

wait(60)

True

False

Change

���6 
�����6��54

 	���6������"62�4�#����1 .�53��53�

� ��4���4�������!��� �1��

� �����53� ������.�53 �1��

� �5 �5�.�4������562�4��

� �5!���� ����� �4� ��� �����662���

� �� � �662����5 �53�

1. Code

Player.GetLocation

Player.UseItem

Terrain.ShowAppearance

Terrain.GetStatus

Player.HaveItem ……

2. Resource

……

Tom (ID)

A.arp ……

B.tga ……

0

2
1

4
3

5

a0
a1

a2 a3

a4

<v0, Tom, …, vn>

Sow the seeds

Player.GetLocation

Terrain.GetStatus

Terrain.ShowAppearance

Dependency

B

A

C

A

B

1

2 3
1 2

4

A

B

1 1

C

Cycle Parallel Edge Non-deterministic

Versionn

Versionn+1

State Transition 
Graph (STG) Construction

< !0, !4…>
< !1, !3…>

….
Test Cases

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4 STG-based
Dependency Analysis

Method
(Code)

Node
(Flowchart)

File
(Resource)

Change Impact Analysis
�Code, Flowchart, Resource�

Greedy-based Regression
Test Selection

0

2

5

0

1

3

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4"!1
"!2

"!0

"!4Versionn

0

2
1

4
3

5

"!0
"!1
"!2 "!3

"!4

terrain=player.GetLocation

terrain.GetStatus(“seed“)

terrain.Type==“cropland”

terrain.ShowAppearance(“seedling“)

Fig. 5: Challenges of test case selection

corresponding nodes (i.e., the old version and the new version)
to identify the changed ones.

Finally, we identify all the changes, annotated as δ =
{∆R,∆P ,∆D}, where ∆R,∆P and ∆D represent the
changed art resource files, methods and flowchart nodes.
With the change information (∆) and the test dependencies
(see Definition 4), we calculate the affected states CS and
transitions CA as follows:

CS = {s|∀s ∈ S ∧ fR(s) ∩∆R ̸= ∅}

CA = {a|∀a ∈ A ∧ (fP (a) ∩∆P ̸= ∅ ∨ fD(a) ∩∆D ̸= ∅)}

Intuitively, the states and actions are marked as affected if
their test dependencies (i.e., the corresponding software files)
are changed. For example, for each state s, fR(s) represents
the corresponding resource files that are used in the state. If
some of these files are changed in the new version (i.e., fR(s)∩
∆R is not empty), then s is the affected state.

C. Regression Test Selection and Execution

Considering that 1) the game software can be very fre-
quently updated, and 2) the game playing is time-consuming (a
test case often takes several dozens of minutes), GameRTS is a
trade-off between practicality and safety (see more discussions
in Section III). We select test cases to cover a changed state or
an action at least once based on the context-insensitivity (see
Section II-B). The experimental result shows all the known
regression bugs could be found by GameRTS, which indicates
a good balance between practicality and safety.

1) Algorithms for test selection: In Figure 5, we show the
challenges of selecting test cases from the STG, where we
assume state B is affected by the change. First, there exist
cycles in the STG, which can lead to infinity exploration that
we want to avoid in the RTS. In regression testing, we require
to traverse the cycles once all the affected states and actions
are covered. For the parallel edges (one state can transit to
another state via two different actions) shown in the middle
of Figure 5, we only require to select one of the parallel edges.
Finally, the game has non-determinism in that the same action
may transit to two different states (e.g., a fighting action could
defeat the monster successfully or unsuccessfully). In this case,
we will repeat the action several times and try to reach the
target state (e.g., state B).

We present the details of our RTS approach in Algorithm 1.
The inputs of the algorithm include the set of affected states
CS , the set of affected actions CA, and the STG of the

6



Algorithm 1: Regression Test Selection for Games
input : CS , CA: the affected states and actions

STG(S,A, T, s0, F ): the STG of the game
output : T : a set of selected test cases

1 t = (), t.selected = false, T = ∅;
2 RTS(s0, CS , CA, t, ∅, T );
3 return T ;
4 Procedure RTS(s, CS , CA, t, visited, T )
5 if s ∈ CS then
6 CS := CS \ {s};
7 t.selected := true;

8 if s is an accepted state then
9 if t.selected then

10 T := T ∪ {t};

11 if CS ̸= ∅ ∨ CA ̸= ∅ then
12 t′ = (), t′.selected = false;
13 RTS(s0, CS , CA, t

′, ∅, T );
14 else
15 return T ;

16 for (s, a, s′) ∈ s.next() do
17 if (s, a, s′) ̸∈ visited then
18 visited := visited ∪ {(s, a, s′)};
19 if a ∈ CA then
20 CA := CA \ {a};
21 t.selected := true;

22 t.append(a);
23 RTS(s′, CS , CA, t, visited, T );

game. The output is a set of test cases that cover the affected
states and actions at least once. The method RTS performs a
recursive traversal over the STG.

Specifically, during the traversal, if the current state s is an
affected state (Line 5), we remove it from the target set Cs

and mark that the current test case should be selected (Line 6-
7). If the current state s is an accepted state, and the test
case t covers some affected states or actions, we add it to the
selected test set T (Line 10). If there are still some states or
actions that are not covered, we continue to identify other test
cases (Line 11-2). If all states or actions are covered, we have
selected a set of test cases T (Line 15).

If the current state is not an accepted state, we select an
action under the current state s. s.next() returns an unordered
set of transitions starting from s (Line 16). At each iteration,
we select one transition (s, a, s′) if it is not visited before
(Line 17). If a is an affected action, we remove it from the
target set CA and mark t as a “selected” test case (Line 19-
21). We add the transition into the current test and continue
the traversal (Lines 22-23).

2) Test Execution and STG Update: After the RTS is
completed, we execute the selected test cases and update the
STG. Since the RTS is performed on the STG constructed
for the old version, some of the selected transitions are no
longer feasible in the new version, which will be removed.
On the other hand, after exercising a changed state, the new
version of the game may lead to a completely new state, which

will be added to the STG. If some affected states/actions are
unreachable with the selected test cases, we rerun the RTS
algorithm on the updated STG to select new test cases.

VI. EVALUATION

To evaluate the effectiveness and efficiency of GameRTS,
we investigate the following research questions3:
• RQ1: Can GameRTS effectively detect the regression bugs?
• RQ2: Can GameRTS save computational resources?
• RQ3: What is the coverage of changed states and actions?
• RQ4: How do different dependency granularities (e.g.,

method-level vs file-level dependency) impact the results?
How do changes in three software files contribute to
GameRTS?

• RQ5: How useful is GameRTS in detecting new regression
bugs?

A. Experimental Setup

1) Implementation: We have implemented GameRTS in-
cluding about 17,400 lines of Python code and 1,100 lines of
Lua code. The Lua side performs the STG-based dependencies
analysis (e.g., the code instrumentation) while the Python
code performs other analyses including the STG construction,
change analysis, test selection, test case replay, etc..

2) Subject: We selected three recent versions of a large-
scale commercial game in our evaluation (denoted as V0, V1

and V2), collected on January 19, 2022, January 26, 2022
and March 08, 2022, respectively. We also used a newly
developed version on March 15, 2022, where we did not
know any regression bugs to evaluate whether our techniques
can find new real-world regression bugs. This game is a very
popular online role-play game, which has more than 30 million
registered users, more than 1.7 thousand tasks, more than
160 thousand art files and millions of lines of code. There
are 313 commits from V0 to V1, and 1,116 commits from
V1 to V2. It usually takes days even months for a player to
accomplish all the tasks in a video game. Thus, game testing
is usually performed task by task rather than the end-to-end
testing. We selected 10 tasks from the game for evaluation.
The game and the tasks are selected based on that: 1) this
game is quite popular and large one (the top 3 of more than
100 commercial games in the partner company); 2) we can
get the authorization and support from the game company,
e.g., accessing the development/testing environment, defining
the abstraction strategies, developing game specific codes
(instrumentation and change analysis) with the developers, and
confirming bugs; and 3) the selected tasks belong to the main
quests and cover comprehensive action patterns of players in
the game.

For the regression testing of each task, the game provider
maintains a number of test cases, which are from recorded
manual tests, existing game playing scripts and automatically
generated tests. As each test case takes about 10-20 minutes

3Due to the space limit, more detailed experimental results (e.g., setting,
STG size, STG visualization and videos) can be found in [11].

7



to run, we cannot select all test cases for the evaluation
(that requires more than 20,000 CPU-hours to run). Hence,
for each task, we select 50 test cases as the initial test
suite of GameRTS based on the importance of these test
cases. Specifically, all recorded manual tests and scripts were
prepared by professional testers, which are of high quality,
and thus selected. Then a certain number of automatically
generated tests (e.g., by reinforcement learning), considered
low quality, are selected such that the total number is 50.

3) Metrics and baselines: To answer RQ1 and RQ2, we use
the metrics of bugs found and the computation time. We select
three baselines: 1) running all the test cases (denoted as All);
2) running randomly selected test cases (denoted as Random).
To keep impartiality, we select the same number of test cases
to compare random strategy and GameRTS, and 3) manual
testing that is performed by 5 game testers in the company
(denoted as Human). We select manual testing as the baseline
because it is one of the major methods for regression testing
used in the company. Similar to random strategy, each game
tester plays the game a number of times which is the same
as the number of test cases selected by GameRTS. Note that
all the professional testers are employed by the collaborating
company with zero prior knowledge about the study, and are
well-trained to test games with different playing strategies. For
RQ4, we will compare the number of test cases selected under
different dependency granularities or with different changed
files.

B. RQ1 and RQ2: Bugs Detected and the Cost

In this experiment, we evaluated how many regression bugs
can be detected by the test cases selected by different methods.
We replay such tests in the real game environment to monitor
whether bugs are triggered and recorded the time cost. Note
that the game environment provides the oracle for detecting
these bugs including some logical bugs, crashes and stuck
bugs.

Table II shows the results of the two revisions. Column Time
shows the end-to-end time used by different methods (minutes
or hours). Note that, the time of GameRTS includes the change
analysis, the test selection from STG, the execution and the
dependency collection. Column #Bug shows the total number
of known regression bugs in the corresponding version. Col-
umn All shows the results of selecting all initial test cases.
Column Random and Column Human show the results of the
random strategy and manual testing, respectively.

Note that, GameRTS selected two test cases for Task 1
(V1 → V2). For other tasks in the update, GameRTS selected
only one test case that can cover all changed files. For the
fair comparison, Random selects the same number of test
cases with GameRTS from the initial test set. To reduce
the randomness, we repeat 10 times for Random strategy to
calculate the average results. For Human, each tester plays
each task 3 times and we calculate the average results of all
repetitions of all testers.

The number of bugs (Column #Bug) under All can be
considered as the total number of known bugs introduced

during the game update. Overall, by comparing the results
under All-#Bug and GameRTS-#Bug, we can observe that
GameRTS does not miss any bug by only selecting one test
case for each task in each revision, indicating the effectiveness
of GameRTS. As for the time cost, GameRTS only needs an
average of 10.12 minutes per task while executing all test
causes needs an average of 10.25 hours per task, indicating
its practicality in industrial video games. Most of the time
spent in GameRTS is the execution of the selected test case
while other analysis takes less than 10 seconds.

Consider the other two baselines Random and Human
that execute the same number of test cases with GameRTS,
they can also capture some regression bugs but much less
than GameRTS (40.0% for Random and 14.3% for Human).
It demonstrates the effectiveness of GameRTS. In terms of
computation time, although all these three methods select the
same number of test cases, the average time costs are very
different. Specifically, GameRTS is much faster than Random,
e.g., the average time (from two revisions) of Random and
GameRTS are 16.94 minutes and 10.17 minutes, respectively.
Our in-depth analysis shows that GameRTS selects shorter
trace than Random because: 1) GameRTS only executes when
there is a cycle in STG (see Figure 5) and 2) GameRTS
terminates the execution once all affected states/actions are
covered (see Line 15 in Algorithm 1).

Compared to others, Human triggers the smallest number
of bugs. We observe that the length of traces from Human
is shorter than GameRTS and Random since game testers
are unknown of the changes (e.g., source code) and adopt a
smarter strategy to complete tasks. Therefore, it reduces the
exploration diversity. Note that, although relatively shorter,
testing by Human takes more time than GameRTS because
human clicks have some delays and game testers may watch
some animations that are skipped by automatic game replay.

Answer to RQ1 & RQ2: GameRTS achieves better balance
between practicality and safety. Specifically, it detects all
known regression bugs and significantly saves computa-
tional resources compared to selecting all test cases.

C. RQ3: State and Action Coverage

Table III shows the state and action coverage of GameRTS.
Column TC shows the total number of changed states/actions.
Column Cov. shows the number of changed states/actions that
can be covered by the test cases selected from GameRTS.
Column New shows the number of new states introduced by
the new version.

We can observe that some changed states and actions cannot
be covered because the update makes them infeasible. For
example, from V0 to V1, 92.3% of changed states and 97.6%
of changed actions are covered. On the other hand, some new
states can be added due to the update. During the test case
execution, we also add the newly explored states in STG. For
example, we added 100 states in total from V0 to V1.

8



TABLE II: Comparative results on the number of regression bugs triggered and the computation time

ID
V0 → V1 V1 → V2

GameRTS All Random Human GameRTS All Random Human
Time(m) #Bug Time(h) #Bug Time(m) #Bug Time(m) #Bug Time(m) #Bug Time(h) #Bug Time(m) #Bug Time(m) #Bug

1 14.8 2 15.1 2 14.4 0.8 17.2 2 15.6 1 17.2 1 14.6 1.0 18.4 0
2 10.1 3 18.5 3 10.7 1.0 11.8 0 10.0 3 19.5 3 13.3 1.3 10.0 0.8
3 10.0 3 15.6 3 15.5 1.8 8.6 0 9.6 1 17.9 1 15.3 0.0 11.9 0
4 10.0 1 6.4 1 15.4 1.0 9.7 0 10.0 1 9.5 1 17.1 1.0 8.8 0
5 10.0 2 8.0 2 19.0 0.0 15.6 0.6 10.1 2 12.3 2 21.0 0.0 14.8 0
6 9.4 1 5.7 1 15.8 1.0 11.3 0 10.0 1 6.5 1 20.4 0.0 10.6 0
7 10.9 1 7.5 1 14.9 0.0 8.4 0 9.7 2 8.5 2 15.5 0.5 10.1 0
8 5.8 1 12.8 1 15.2 0.0 4.9 0 6.8 0 9.7 0 18.4 0.3 5.9 0
9 10.0 1 5.6 1 20.4 0.5 15.1 0 10.0 1 6.3 1 20.3 1.0 14.8 0.6
10 10.2 1 7.5 1 20.8 0.0 15.0 0 10.3 0 12.9 0 20.8 0.0 15.2 0

Total 101.2 16 102.5 16 162.1 6.1 117.6 2.6 102.1 12 120.3 12 176.7 5.1 120.4 1.4

TABLE III: Coverage results of GameRTS

ID
V0->V1 V1->V2

State Action State Action
TC Cov. New TC Cov. TC Cov. New TC Cov.

1 34 31 11 50 50 30 30 1 109 102
2 32 32 22 22 21 31 31 18 54 51
3 12 12 1 10 10 37 36 18 99 99
4 30 29 8 29 29 29 29 6 106 105
5 28 26 1 42 42 27 24 5 59 55
6 22 19 2 28 28 21 21 21 62 62
7 32 32 26 23 23 30 30 16 57 57
8 7 6 2 19 14 6 5 2 70 67
9 19 14 18 21 21 17 15 4 75 75

10 4 2 31 7 7 4 4 9 68 68
Total 220 203 122 251 245 232 225 100 759 741

Answer to RQ3: An average of 94.7% states and 97.6%
actions are covered by our selected test cases. Due to the
update, some changed states and actions become infeasible
and therefore cannot be covered. Meanwhile, the test cases
triggered some new states in the new game version.

D. RQ4: Impact of Dependency Granularity and Sources

1) The Choice of Dependency Granularity: In GameRTS,
we build the test selection based on the art files, the methods
of the code and the nodes of the flowcharts. Following the
existing work [4], [5], we select the file-level test dependencies
as the baseline. Specifically, in the file-level baseline, we
compute test dependency using more coarse information, i.e.,
art file, code file and flowchart file. In Table IV, we report the
number of states and actions selected from V0 to V1. Results
from V1 to V2 can be found on our website [11].

Under columns AllFile, we observe that all states (1,082)
and actions (968) in the STG are selected for each game.
However, under Column GameRTS, we only need to select
149 states (13.77%) and 232 actions (23.97%). Regarding the
number of test cases selected by Algorithm 1, in Table IV, the
file-level selection selects a total of 146 test cases to cover all
states and actions while our method only selects 10 test cases
(6.85%). Thus, the fine-grained dependencies can help largely
reduce the overhead of the testing.

Answer to RQ4-1: The file-level dependency is too coarse
for regression testing of the game software. The fine-
grained test dependency in GameRTS, on the other hand,
selected much fewer states, actions and traces.
2) Effect of different files: We evaluate how different types

of game files (i.e., the art files, the source code, and the flow

chart) impact the results of the RTS. Specifically, we used
the art files, the methods in source code and the nodes of
flowcharts to perform the RTS separately. The columns Art,
Meth. and Node in Table IV show the respective results.

The results show that using only one type of file tends to
select fewer states, actions and test cases than using all of
them. The number of test cases selected by using only one
type of file (i.e., Art, Meth. and Node) is 1, which is omitted
from the Table IV. In addition, as art resource files only affect
the states while methods and nodes only affect the actions,
all states in GameRTS are selected based on the art files, i.e.,
the numbers of states under Column GameRTS and Column
Art are the same. We show the number of regression bugs
captured by the selected tests (shown in Column #Bug). It is
not surprising that using only one type of file (i.e., resource
file, design file, and source code) can miss some bugs since
changes on other files are missing.

Answer to RQ4-2: Art files only affect the states while
code files and flowcharts affect the actions. Using only one
type of file misses some bugs.

E. RQ5: Detecting Real-world Bugs

To evaluate the usefulness of GameRTS, we applied
GameRTS in a newly developed version (March 16, 2022)
by performing RTS between V2 and the selected version.
We totally found 2 critical issues, which were confirmed by
developers. We summarized the 2 bugs [11] as follows:
1) Bug 1 (Design Bug). The previous version defines the task

that the players have to kill 10 monsters. In the new version,
to improve the playability, the designer modified the types
of monsters, where one of them can become invisible. This
invisible monster can only be killed by Area of Effect
(AOE) skills. If players do not use AOE skills, the task
can never be completed. The developers fix this bug by
removing the invisible monster.

2) Bug 2 (Source Code Bug). There is one step in the task
that requires the QTE checking (Quick Time Event)4. The
previous version only checks whether a key is pressed
within the specified time. To increase the difficulty, the
designer changes the flow, i.e., a key must be pressed 9
times. The buggy checking code is press num == n,

4https://en.wikipedia.org/wiki/Quick time event

9



TABLE IV: Results of RTS with different test dependencies (V0 → V1)

Task ID #State #Action #Test Cases #Bug
GameRTS AllFile Art Meth. Node GameRTS AllFile Art Meth. Node GameRTS AllFile Art Meth. Node

1 39 104 39 0 0 45 88 0 42 3 1 17 1 2 1
2 6 111 6 0 0 34 121 0 33 2 1 16 1 2 0
3 9 69 9 0 0 30 137 0 23 7 1 9 1 3 1
4 6 65 6 0 0 3 148 0 3 0 1 10 1 0 0
5 3 145 3 0 0 10 111 0 10 4 1 16 0 2 1
6 5 66 5 0 0 11 73 0 11 0 1 18 0 1 0
7 30 214 30 0 0 26 107 0 23 3 1 16 1 0 0
8 17 69 17 0 0 13 53 0 13 0 1 11 0 1 0
9 28 185 28 0 0 56 78 0 50 6 1 17 1 1 0
10 6 54 6 0 0 4 52 0 4 0 1 16 1 1 1

Total 149 1082 149 0 0 232 968 0 212 25 10 146 7 13 4

where n is equal to 9 in this version. However, when a
key is frequently pressed, press num can be greater than
n, which makes the press num == n not satisfied. De-
velopers have changed the checking as press num >= n.
This bug is difficult to be triggered by players or game
testers since humans usually do not click a key so quickly.

For the comparison, we also run the random strategy that
selects the same number of tests with GameRTS (for 10 times)
and the no-selection strategy (using all tests). The average
number of bugs identified by random strategy is 0.2 while
using all tests can also identify the two bugs but take 100+
hours. The results demonstrate the usefulness of GameRTS.

VII. THREATS TO VALIDITY

One threat to validity is the subjects selected in our experi-
ments. To mitigate it, in this paper, we selected multiple tasks
in a commercial game, a total of 7,245 commits. Randomness
is also a threat to the validity, so we repeat multiple times
to mitigate the threat. Another threat to validity is the con-
struction of the STG, which depends on the initial test set.
To mitigate this problem, we selected different types of test
cases as the initial test set, e.g., the recorded manual tests, the
scripts and other automatically generated tests.

A further threat lies in the context-insensitivity of the game.
If a new application is context-sensitive, then we need to select
more test cases from STG to cover the changed states and
actions that may lead to different execution behaviors of the
games. This is a tradeoff we can explore between safety and
practicality of the regression testing.

VIII. RELATED WORK

A. Regression Testing

Since re-running the entire test suite is time-consuming,
various approaches have been studied to reduce the cost of
regression testing [17] such as regression test selection [4],
[5], [8], [18]–[20], test suite minimization [21]–[26] and
test case prioritization [27]–[30]. In addition, there are some
techniques [31]–[36] that focus on test case generation.

1) Traditional RTS.: Xu et al. [20] proposed regression
testing of Aspect-oriented software. They proposed a control-
flow representation of Java programs and a two-phase graph
traversal algorithm to identify dangerous edges that may lead
to semantic differences. Then a set of tests that can capture

such differences are selected. Zhang et al. [18] detected the
software changes at the method-level and select test cases
that execute such changed methods. Gligoric et al. [4] pro-
posed EKSTAZI, a lightweight RTS technique based on the
file dependencies. Compared with the basic-block level and
method-level RTS techniques, file-level RTS is more efficient
in the dependency calculation but may select more test cases.
Zhang [5] proposed a hybrid test selection technique that
combines the strengths of RTS at different granularity, i.e.,
the combination of the method-level and file-level.

2) RTS on GUI-based Applications: Although there are
few RTS works on game software, there have been some
techniques proposed for GUI-based applications, e.g., Android
applications and Web applications. DetReduce [37] proposes
a test minimization algorithm (works in a single version) by
identifying and removing some common forms of redundan-
cies introduced in the GUI testing tools. To enable the RTS
on Android applications, ReTestDroid [38] proposes a precise
interprocedural control flow graph (ICFG) that can handle the
asynchronous tasks, the life cycle of fragments and the native
code. The ICFG allows fine-grained dependency analysis,
making more precise RTS. Qadroid [39] proposes the event-
aware regression selection tool for Android apps TestSage [40]
proposes a function-level dynamic RTS technique for Web
applications. It uses two-pass execution (a same test is run in
non-instrumented system and instrumented system) to improve
the efficiency. Nakagawa et al. [41] proposed the method-
level RTS for Web applications and WebRTS [42] proposes
a file-level RTS technique that tracks file-level dependencies
in parallel and support distributed Web applications.

The existing RTS techniques in traditional software and
GUI-based applications are hard to be used in video games.
The major challenges are: 1) running a test case in game
software usually takes longer time (e.g., tens of minutes to
hours) and 2) it is often the case that most or all of the tests
could be affected by the changes from different files. The
existing RTS techniques could select many tests, making them
impractical. The biggest difference in our work is that we build
the STG to represent test cases of game software, and calculate
the hybrid dependencies between the states/actions (instead of
whole tests) and software files, which can significantly reduce
the complexity.

10



B. Game Testing

Due to the complex interactions between games and users,
existing automatic testing techniques are ineffective in testing
games. Some works are conducted to analyze the charac-
teristics of game software [43]–[45]. In addition, there have
been some techniques proposed for automated game testing.
Iftikhar et al. [46] proposed a model-based testing approach
for automated testing of platform games. Zheng et al. [14]
proposed Wuji, an automated testing technique for testing
game software. Specifically, evolutionary deep reinforcement
learning is adopted to train policies that can explore more wide
and deep states of the game. Different from our work, these
techniques mainly focus on general-purpose game testing on
a single version instead of regression testing.

However, to the best of our knowledge, there is little work
for RTS on the evaluation of game software. Wu et al. [3]
recently propose to generate test cases targeting the different
behaviors of two versions of a game. The DRL is used to
train the difference-aware policy by designing the divergence
rewards. The difference is that it works on the test case
generation while our work mainly focuses on the regression
test selection.

IX. CONCLUSIONS

Automated game testing is still a challenging task, espe-
cially on large-scale video games. This paper first performed
a study on game development, game evolution and the root
causes of the regression bugs. Based on the understanding, we
proposed the first regression testing framework including how
to represent test suites of games and how to select regression
tests. The experimental results demonstrated that GameRTS
is more effective than the strategies of random selection,
selecting all tests and the file-based regression test selection.
In the future, we plan to extend GameRTS to other software
with GUI (e.g., Android and Web applications), which requires
interactions between users and the software. Without loss
of generality, for the new software, we need to design the
abstraction function to construct the STG and develop the
test dependency analysis based on the corresponding software
elements (e.g., code, resource).

ACKNOWLEDGMENT

This work was partially supported by the Ministry of
Education, Singapore under its Academic Research Fund
Tier 1 (21-SIS-SMU-033), National Natural Science Foun-
dation of China (62227805, 62072398), SUTD-ZJU IDEA
Grant for visiting professors (SUTD-ZJUVP201901), National
Key R&D Program of China (2020AAA0107700), Alibaba-
Zhejiang University Joint Institute of Frontier Technologies,
National Key Laboratory of Science and Technology on Infor-
mation System Security (6142111210301), State Key Labora-
tory of Mathematical Engineering and Advanced Computing,
and by Key Laboratory of Cyberspace Situation Awareness
of Henan Province (HNTS2022001). We thank our industrial
research partner NetEase, Inc., especially the Fuxi AI Lab and

Game Testing Department of Leihuo Business Groups for their
support with the experiments and constructive discussion.

REFERENCES

[1] A. L. MAG, “Video games now part of daily life,”
Feb. 2019. [Online]. Available: https://www.mediametrie.fr/en/
video-games-now-part-daily-life

[2] J. Culp, Online Gaming Safety and Privacy. The Rosen Publishing
Group, Inc, 2013.

[3] Y. Wu, Y. Chen, X. Xie, B. Yu, C. Fan, and L. Ma, “Regression
testing of massively multiplayer online role-playing games,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 692–696.

[4] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression
test selection with dynamic file dependencies,” in Proceedings
of the 2015 International Symposium on Software Testing and
Analysis, ser. ISSTA 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 211–222. [Online]. Available:
https://doi.org/10.1145/2771783.2771784

[5] L. Zhang, “Hybrid regression test selection,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18, 2018,
p. 199–209.

[6] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, p.
67–120, 2012.

[7] L. C. Briand, Y. Labiche, and G. Soccar, “Automating impact analysis
and regression test selection based on uml designs,” in International
Conference on Software Maintenance, 2002. Proceedings., 2002, pp.
252–261.

[8] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression test selection
for java software,” in The 16th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and App., ser. OOPSLA
’01, 2001, p. 312–326.

[9] G. Rothermel and M. J. Harrold, “A safe, efficient regression
test selection technique,” ACM Trans. Softw. Eng. Methodol.,
vol. 6, no. 2, p. 173–210, Apr. 1997. [Online]. Available: https:
//doi.org/10.1145/248233.248262

[10] I. Borovikov, J. Harder, M. Sadovsky, and A. Beirami, “Towards
interactive training of non-player characters in video games,” arXiv
preprint arXiv:1906.00535, 2019.

[11] GameRTS. [Online]. Available: https://sites.google.com/view/gamerts
[12] D. Liming and D. Vilorio, “Work for play: Careers in video game

development.” Occupational Outlook Quarterly, vol. 55, no. 3, pp. 2–11,
2011.

[13] A. S. Falim and J. Prestiliano, “The use of board games as learning
media of project time management,” Journal of Nonformal Education,
vol. 4, no. 1, pp. 69–78, 2018.

[14] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[15] C.-P. Bezemer, J. Pouwelse, and B. Gregg, “Understanding software
performance regressions using differential flame graphs,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 2015, pp. 535–539.

[16] O. Scholdström, “Lua parser,” May 2020. [Online]. Available:
https://github.com/fstirlitz/luaparse

[17] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software testing, verification and reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[18] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM). IEEE,
2011, pp. 23–32.

[19] H. Hemmati and L. Briand, “An industrial investigation of similarity
measures for model-based test case selection,” in 2010 IEEE 21st
International Symposium on Software Reliability Engineering. IEEE,
2010, pp. 141–150.

[20] G. Xu and A. Rountev, “Regression test selection for aspectj software,”
in 29th International Conference on Software Engineering (ICSE’07).
IEEE, 2007, pp. 65–74.

11

https://www.mediametrie.fr/en/video-games-now-part-daily-life
https://www.mediametrie.fr/en/video-games-now-part-daily-life
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/248233.248262
https://doi.org/10.1145/248233.248262
https://sites.google.com/view/gamerts
https://github.com/fstirlitz/luaparse


[21] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie, “How
do assertions impact coverage-based test-suite reduction?” in 2017
IEEE International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2017, pp. 418–423.

[22] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based regression test case selection, minimization and prioritization: A
case study on an industrial system,” Software Testing, Verification and
Reliability, vol. 25, no. 4, pp. 371–396, 2015.

[23] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test
suite reduction,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 738–748.

[24] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on software
Engineering, vol. 29, no. 3, pp. 195–209, 2003.

[25] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov, “Balancing
trade-offs in test-suite reduction,” in Proceedings of the 22nd ACM SIG-
SOFT international symposium on foundations of software engineering,
2014, pp. 246–256.

[26] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining
test-suite reduction and regression test selection,” in Proceedings of the
2015 10th joint meeting on foundations of software engineering, 2015,
pp. 237–247.

[27] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified test
case prioritization approach,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 24, no. 2, pp. 1–31, 2014.

[28] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 268–279.

[29] K. Zhai, B. Jiang, and W. Chan, “Prioritizing test cases for regression
testing of location-based services: Metrics, techniques, and case study,”
IEEE Transactions on Services Computing, vol. 7, no. 1, pp. 54–67,
2012.

[30] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 192–201.

[31] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury, “Regression tests
to expose change interaction errors,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: Association for Computing Machinery, 2013, p.
334–344. [Online]. Available: https://doi.org/10.1145/2491411.2491430

[32] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a doubt: Testing
for divergences between software versions,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), 2016, pp.
1181–1192.

[33] G. Yang, S. Person, N. Rungta, and S. Khurshid, “Directed incremental
symbolic execution,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 1,
Oct. 2014. [Online]. Available: https://doi.org/10.1145/2629536

[34] A. Orso and T. Xie, “Bert: Behavioral regression testing,” in
Proceedings of the 2008 International Workshop on Dynamic Analysis:
Held in Conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2008), ser. WODA ’08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
36–42. [Online]. Available: https://doi.org/10.1145/1401827.1401835

[35] W. Jin, A. Orso, and T. Xie, “Automated behavioral regression testing,”
in 2010 Third International Conference on Software Testing, Verification
and Validation, 2010, pp. 137–146.

[36] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha:
Efficient domain-independent differential testing,” in 2017 IEEE Sym-
posium on Security and Privacy (SP), 2017, pp. 615–632.

[37] W. Choi, K. Sen, G. Necul, and W. Wang, “Detreduce: minimizing
android gui test suites for regression testing,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 2018,
pp. 445–455.

[38] B. Jiang, Y. Wu, Y. Zhang, Z. Zhang, and W.-K. Chan, “Retestdroid:
towards safer regression test selection for android application,” in 2018
IEEE 42nd annual computer software and applications conference
(COMPSAC), vol. 1. IEEE, 2018, pp. 235–244.

[39] A. Sharma and R. Nasre, “Qadroid: regression event selection for
android applications,” in Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, 2019, pp. 66–77.

[40] H. Zhong, L. Zhang, and S. Khurshid, “Testsage: Regression test selec-
tion for large-scale web service testing,” in 2019 12th IEEE Conference

on Software Testing, Validation and Verification (ICST). IEEE, 2019,
pp. 430–440.

[41] T. Nakagawa, K. Munakata, and K. Yamamoto, “Applying modified code
entity-based regression test selection for manual end-to-end testing of
commercial web applications,” in 2019 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW). IEEE, 2019,
pp. 1–6.

[42] Z. Long, Z. Ao, G. Wu, W. Chen, and J. Wei, “Webrts: A dynamic
regression test selection tool for java web applications,” in 2020 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2020, pp. 822–825.

[43] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing
the devices to test your app on: A case study of android game apps,”
in 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 610–620.

[44] S. Aleem, L. F. Capretz, and F. Ahmed, “Critical success factors to
improve the game development process from a developer’s perspective,”
J. Comput. Sci. Technol., vol. 31, no. 5, pp. 925–950, 2016.

[45] G. Lovreto, A. T. Endo, P. Nardi, and V. H. S. Durelli, “Automated tests
for mobile games: An experience report,” in 17th Brazilian Symposium
on Computer Games and Digital Entertainment, SBGames 2018, Foz do
Iguaçu, Brazil, October 29 - November 1, 2018, 2018, pp. 48–56.

[46] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood, “An automated
model based testing approach for platform games,” in 2015 ACM/IEEE
18th International Conference on Model Driven Engineering Languages
and Systems (MODELS). IEEE, 2015, pp. 426–435.

12

https://doi.org/10.1145/2491411.2491430
https://doi.org/10.1145/2629536
https://doi.org/10.1145/1401827.1401835

	Introduction
	An empirical study on GAME RTS
	Three Sources of Game Software
	Game Execution Behaviors Manifesting Markov Property

	Problem Formulation and Overview
	Problem Definition
	Overview

	State Transition Graphs for Games
	STG-based Regression Test Selection
	Test Dependency Analysis on STG
	Change Impact Analysis for Games
	Regression Test Selection and Execution
	Algorithms for test selection
	Test Execution and STG Update


	Evaluation
	Experimental Setup
	Implementation
	Subject
	Metrics and baselines

	RQ1 and RQ2: Bugs Detected and the Cost
	RQ3: State and Action Coverage 
	RQ4: Impact of Dependency Granularity and Sources
	The Choice of Dependency Granularity
	Effect of different files

	RQ5: Detecting Real-world Bugs

	Threats to Validity
	Related Work
	Regression Testing
	Traditional RTS.
	RTS on GUI-based Applications

	Game Testing

	Conclusions
	References

